32 research outputs found

    Exploring Impacts of River Discharge on Forage Fish and Predators Using Ecopath With Ecosim

    Get PDF
    The ecology of estuaries is shaped significantly by the extent of freshwater discharge which regulates abiotic processes and influences overall biological productivity. The Suwannee River Estuary of Florida’s Big Bend Coastline has historically been a productive and diverse estuarine ecosystem supported by significant freshwater inputs from the Suwannee River. In recent years, significant changes in land use and climatic conditions have resulted in lower discharges from the Suwannee. Our objectives were to explore the impact of freshwater inputs from the Suwannee River on the estuarine forage fish and sportfish communities downstream. We built a trophic-dynamic food web model in Ecopath with Ecosim to simulate different levels of discharge and evaluate how changes in discharge (drought and floods) would influence the trophic structure of the food web. Using the fitted model, we applied a series of different short-term and long-term flow projections under different climatic scenarios to evaluate impacts on fish functional groups and sportfish biomass. Simulations suggested that ecological production was more influenced by drought conditions than flood conditions. In our short-term scenarios, the drought simulations produced biomass changes that were approximately twice as substantial as the flood scenarios. When making comparisons to other published EwE models, we generally observed smaller changes in biomass production. Although this model focused on the influence of bottom-up effects, we observed strong top-down control of snook (Centropomus undecimalis) on the system. Several functional groups were particularly sensitive to changes in snook abundance which included spotted seatrout (Cynoscion nebulosus), sand seatrout (C. arenarius), and other members of the family Sciaenidae. Because snook have recently colonized the estuary, likely as a result of warmer winter temperatures, this finding has implications for climate change and natural resource management

    The Path to an Ecosystem Approach for Forage Fish Management: A Case Study of Atlantic Menhaden

    Get PDF
    Atlantic menhaden (Brevoortia tyrannus) support the largest fishery by volume on the United States East Coast, while also playing an important role as a forage species. Managers’ and stakeholders’ increasing concerns about the impact of Atlantic menhaden harvest on ecosystem processes led to an evolution in the assessment and management of this species from a purely single-species approach to an ecosystem approach. The first coastwide stock assessment of Atlantic menhaden for management used a single-species virtual population analysis (VPA). Subsequent assessments used a forward projecting statistical catch-at-age framework that incorporated estimates of predation mortality from a multispecies VPA while analytical efforts continued toward the development of ecosystem models and explicit ecological reference points (ERPs) for Atlantic menhaden. As an interim step while ecosystem models were being developed, a series of ad hoc measures to preserve Atlantic menhaden biomass for predators were used by managers. In August 2020, the Atlantic States Marine Fisheries Commission formally adopted an ecological modeling framework as a tool to set reference points and harvest limits for the Atlantic menhaden that considers their role as a forage fish. This is the first example of a quantitative ecosystem approach to setting reference points on the United States Atlantic Coast and it represents a significant advance for forage fish management. This case study reviews the history of Atlantic menhaden stock assessments and management, outlines the progress on the current implementation of ERPs for this species, and highlights future research and management needs to improve and expand ecosystem-based fisheries management

    Combining Ecosystem and Single-Species Modeling to Provide Ecosystem-Based Fisheries Management Advice Within Current Management Systems.

    Get PDF
    Although many countries have formally committed to Ecosystem-Based Fisheries Management (EBFM), actual progress toward these goals has been slow. This paper presents two independent case studies that have combined strategic advice from ecosystem modeling with the tactical advice of single-species assessment models to provide practical ecosystem-based management advice. With this approach, stock status, reference points, and initial target F are computed from a single-species model, then an ecosystem model rescales the target F according to ecosystem indicators without crossing pre-calculated single-species precautionary limits. Finally, the single-species model computes the quota advice from the rescaled target F, termed here Feco. Such a methodology incorporates both the detailed population reconstructions of the single-species model and the broader ecosystem perspective from ecosystem-based modeling, and fits into existing management schemes. The advocated method has arisen from independent work on EBFM in two international fisheries management systems: (1) Atlantic menhaden in the United States and (2) the multi species fisheries of the Irish Sea, in the Celtic Seas ecoregion. In the Atlantic menhaden example, the objective was to develop ecological reference points (ERPs) that account for the effect of menhaden harvest on predator populations and the tradeoffs associated with forage fish management. In the Irish Sea, the objective was to account for ecosystem variability when setting quotas for the individual target species. These two exercises were aimed at different management needs, but both arrived at a process of adjusting the target F used within the current single-species management. Although the approach has limitations, it represents a practical step toward EBFM, which can be adapted to a range of ecosystem objectives and applied within current management systems.publishedVersio

    Identifying trade-offs and reference points in support of ecosystem approaches to managing Gulf of Mexico menhaden

    Get PDF
    Gulf menhaden (Brevoortia patronus) support the largest fishery by yield in the Gulf of Mexico (GoM) and are a key forage species for many marine predators. While menhaden stock assessments indicated that overfishing was not likely to have occurred in the past, concerns have been raised regarding the possible effects of menhaden fishing on their predators. In this study, we used a US Gulfwide Ecopath with Ecosim (EwE) model to explore the predicted effects of increased menhaden harvest on the GoM ecosystem and focused our analyses on Gulf menhaden predators. Key menhaden predators identified included king mackerel (Scomberomorus cavalla), Spanish mackerel (Scomberomorus maculatus), sea trout (Cynoscion spp.), red drum (Sciaenops ocellatus), and pelagic coastal piscivores [e.g., bluefish (Pomatomus saltatrix)]. As expected, these predators exhibited reduced biomass in response to increased Gulf menhaden harvest, with a predicted 11% decrease in predator biomass at simulated fishing levels near historical highs. Our results indicate strong relationships between the effects of menhaden fishing and the predator fishing mortality for king mackerel and intermediate relationships for Spanish mackerel, blacktip shark (Carcharhinus limbatus), red drum, large coastal sharks, and pelagic coastal piscivores. Biomass of predator groups such as demersal coastal invertebrate feeders [e.g., drums and croakers (Sciaenidae)] are more affected by menhaden harvest (through trophodynamics interactions and bycatch removal) compared to the isolated effect of their fishing mortality. For almost all the groups examined in the trade-off analysis, with the exception of sea trout, current biomass (2016) was higher than their target biomass representing 75% of their biomass at maximum sustainable yield. In comparison to the time series of fishing mortality rates estimated by the most recent Gulf menhaden stock assessment, the mean ecological reference point (ERP) of 0.862 was exceeded in all but 1 year from 1977 to 2007; however, neither the target nor threshold upper ERP value has been exceeded since 2008. The observed Gulf menhaden landings from 2003 to the present were generally within the range of the projected equilibrium landings (i.e., within confidence intervals) at both the ERP target and threshold values except for three recent years

    Combining Ecosystem and Single-Species Modeling to Provide Ecosystem-Based Fisheries Management Advice Within Current Management Systems

    Get PDF
    Pubication history: Accepted - 7 December 2020; Published online - 8 January 2021Although many countries have formally committed to Ecosystem-Based Fisheries Management (EBFM), actual progress toward these goals has been slow. This paper presents two independent case studies that have combined strategic advice from ecosystem modeling with the tactical advice of single-species assessment models to provide practical ecosystem-based management advice. With this approach, stock status, reference points, and initial target F are computed from a single-species model, then an ecosystem model rescales the target F according to ecosystem indicators without crossing pre-calculated single-species precautionary limits. Finally, the single-species model computes the quota advice from the rescaled target F, termed here Feco. Such a methodology incorporates both the detailed population reconstructions of the single-species model and the broader ecosystem perspective from ecosystem-based modeling, and fits into existing management schemes. The advocated method has arisen from independent work on EBFM in two international fisheries management systems: (1) Atlantic menhaden in the United States and (2) the multi species fisheries of the Irish Sea, in the Celtic Seas ecoregion. In the Atlantic menhaden example, the objective was to develop ecological reference points (ERPs) that account for the effect of menhaden harvest on predator populations and the tradeoffs associated with forage fish management. In the Irish Sea, the objective was to account for ecosystem variability when setting quotas for the individual target species. These two exercises were aimed at different management needs, but both arrived at a process of adjusting the target F used within the current single-species management. Although the approach has limitations, it represents a practical step toward EBFM, which can be adapted to a range of ecosystem objectives and applied within current management systems.The Atlantic menhaden work was supported by National Oceanic and Atmospheric Administration Award No. NA15NMF4740069 and Lenfest Ocean Program grants nos. 00025536 and 00032187, and thanks all of the members of the ASMFC Menhaden Technical Committee and the ERP WG for their critical contributions to model development and helpful discussions. We acknowledge the members of the ICES Benchmark Workshop WKIrish for their participation and collaboration, and the NWWAC and BIM for facilitating the meetings. The EwE modeling work was carried out with the support of the Marine Institute and funded under the Marine Research Sub-programme by the Irish Government (Grant-Aid Agreement No. CF/16/08). DP was supported by the Science Foundation Ireland (www.sfi.ie) Investigator Programme (grant no. 14/IA/2549), and DR by Project FishKOSM funded by the Department of Agriculture, Food and the Marine’s Competitive Research Funding programmes. DH acknowledges support from the Institute of Marine Research strategic project Reduced Uncertainty in Stock Assessment (REDUS). Open access funding was provided by the Institute of Marine Research, Norway

    Evidence of population-level impacts and resiliency for Gulf of Mexico shelf taxa following the Deepwater Horizon oil spill

    Get PDF
    The goal of this paper was to review the evidence of population-level impacts of the Deepwater Horizon Oil Spill (DWH) on Gulf of Mexico (GOM) continental shelf taxa, as well as evidence of resiliency following the DWH. There is considerable environmental and biological evidence that GOM shelf taxa were exposed to and suffered direct and indirect impacts of the DWH. Numerous assessments, from mesocosm studies to analysis of biopsied tissue or tissue samples from necropsied animals, revealed a constellation of physiological effects related to DWH impacts on GOM biota, some of which clearly or likely resulted in mortality. While the estimated concentrations of hydrocarbons in shelf waters and sediments were orders of magnitude lower than measured in inshore or deep GOM environments, the level of mortality observed or predicted was substantial for many shelf taxa. In some cases, such as for zooplankton, community shifts following the spill were ephemeral, likely reflecting high rates of population turnover and productivity. In other taxa, such as GOM reef fishes, impacts of the spill are confounded with other stressors, such as fishing mortality or the appearance and rapid population growth of invasive lionfish (Pterois spp.). In yet others, such as cetaceans, modeling efforts to predict population-level effects of the DWH made conservative assumptions given the species’ protected status, which post-DWH population assessments either failed to detect or population increases were estimated. A persistent theme that emerged was the lack of precise population-level data or assessments prior to the DWH for many taxa, but even when data or assessments did exist, examining evidence of population resiliency was confounded by other stressors impacting GOM biota. Unless efforts are made to increase the resolution of the data or precision of population assessments, difficulties will likely remain in estimating the scale of population-level effects or resiliency in the case of future large-scale environmental catastrophes

    Evaluation of Florida Stone Crab Life History and Management Scenarios using Spawning Potential Ratios

    No full text
    The stone crab, Menippe mercenaria, supported the third most valuable fishery in Florida in 2016. Declining catch per unit effort (CPUE) and a negative trend in landings since 2000 have raised concerns among fishermen, researchers, and fishery managers as to the fishery’s sustainability. The Fish and Wildlife Research Institute of the Florida Fish and Wildlife Conservation Commission estimates that the state’s stone crab fishery has been overexploited since 1997. This stock status determination, however, is based largely on trends in total landings and CPUE and does not account for the life-history parameters that describe stock productivity, such as size at maturity, fecundity, and survivorship. In this study, an age-structured per-recruit model was developed to evaluate how alternative biological parameters and management scenarios might affect reproductive output, calculated as the spawning potential ratio (SPR), of a theoretical stone crab population. The model incorporated new estimates of size at maturity, fecundity, and temperature-dependent release mortalities. Spawning potential ratios increased with decreasing size at sexual maturity and were sensitive to increasing natural mortality. The largest contributor to changes in SPR was mortality associated with the declawing and release of stone crabs. We also assessed various management scenarios including regulations governing minimum claw length, requiring the use of juvenile trap excluder devices, and institution of temperature-dependent season openings. Increasing the minimum claw length and excluding small juveniles from traps provided moderate protection to the spawning stock. The model suggests that adaptive management strategies that allow fishing only when water temperatures are below 24 °C (the temperature at which modeled survival is improved) could greatly reduce mortality and increase SPR. We examined a suite of management scenarios on the effect of SPR, but additional research should be conducted to determine the socioeconomic impact of changes in regulations in this valuable fishery
    corecore