684 research outputs found

    Effects of Pacing When Using Material Handling Manipulators

    Full text link
    Common manipulator-assisted materials handling tasks were performed in a laboratory simulation at self-selected and faster (paced) speeds. The effects of pacing on peak hand forces, torso kinematics, spine moments and forces, and muscle antagonism were determined, along with any influences of several task variables on these effects. The faster trials were performed 20% more rapidly than the self-paced trials. It was found that (a) achieving this level of performance required 10% higher hand forces and 5%-10% higher torso moments, (b) consistent torso postures and motions were used for both speed conditions, and (c) the faster trials resulted in 10% higher spine forces and 15% higher levels of lumbar muscle antagonism. On whole, these results suggest a higher risk of musculoskeletal injury associated with performance of object transfers at faster than self-selected speeds with and without a manipulator. Further analysis provided evidence that the use of manipulators involves higher levels of motor coordination than do manual tasks. Several implications regarding the use of material handling manipulators in paced operations are discussed. Results from this investigation can be used in the design, evaluation, and selection of material handling manipulators.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67067/2/10.1518_001872099779591240.pd

    Resilience reconciled

    Get PDF
    Resilience scholarship continues to inspire opaque discourse and competing frameworks often inconsistent with the complexity inherent in social–ecological systems. We contend that competing conceptualizations of resilience are reconcilable, and that the core theory is useful for navigating sustainability challenges. Resilience as a scientific concept exploded in the early 2000s and is now being adopted by a range of disciplines and by a wide diversity of actors, from city planners to networks of global protectedarea managers. Resilience concepts are now integrated within national and international calls for proposals, research initiatives and centres in both the biophysical and social sciences. However, resilience scholarship has encouraged abstract discourse including many new and derivative frameworks aimed at re-conceptualizing resilience. Competing frameworks contribute to a loss of clarity about the original concept and theory of resilience; these frameworks often differ only minimally from each other and, most importantly, are often inconsistent with the complexity inherent in social–ecological systems (SESs). We believe that this is because the concept of resilience has both an attractive simplicity, and a rich underlying complexity, which leaves key aspects open for debate. Despite apparent discrepancies among numerous competing frameworks and the recognition that a diversity of approaches is healthy for scientific progress, we contend that the prevailing definitions of resilience, such as those rooted in ecological stability (for example, recovery, robustness and persistence), are reconcilable under the umbrella of the original theory of ecological resilience (the amount of disturbance needed to cause a regime shift; for example, a clear-water lake changing to a turbid lake)2. Reconciling definitions of resilience is not trivial; our collective understanding and application of resilience has widespread implications for how we, as a society, understand and navigate global change. A view of the Earth as nested SESs — systems of dynamic, linked feedbacks between humans and the biophysical environment (for example, the influence of political economy on landscape shifts and vice versa) — is essential for definitions of resilience to resonate. Currently, resilience is applied as a descriptor, a measure, and a tool for relative analysis of system dynamics. Here we revisit three core uses of the term: resilience as a process, a rate, and an emergent property of SESs3. We reconcile these core uses with ecological resilience2 and provide examples of successful application and growth of the concept

    Extensional flow affecting shear viscosity: experimental evidence and comparison to models

    Get PDF
    The effect of extensional flow on apparent shear viscosity has never previously been directly measured nor is it often considered. Here, for the first time, through using a novel flow configuration (two-phase shear response under extensional flow), we have directly measured the effect extensional flow has on the apparent shear viscosity of a viscoelastic polymer solution in a controlled and kinematically mixed manner. We show, via a control transient shear experiment, that the apparent shear viscosity of the solution under mixed deformation depends not only on the shear rate but also on the extension rate and their relative direction: shear thinning being enhanced by parallel and reduced by perpendicular extensional flow, respectively. A 62% reduction in apparent viscosity with parallel extension was seen in this work. We then test the ability of the commonly used Giesekus and Carreau–Yasuda (incorporating generalized shear rate) models to predict the effect of extension rate on apparent shear viscosity against our data. The Giesekus model was found to predict the correct qualitative behavior under both parallel and perpendicular extensional flow, and depending on the fitting parameters, also provided a loosely quantitative agreement. Conversely, the generalized shear rate description does not capture the qualitative behavior, with the most significant errors occurring for perpendicular extension (i.e., expansion) flows. This work emphasizes the rarely noted shortcomings of the latter approach when used for experimental analysis and engineering design when extensional flows are additionally present

    Quantifying Uncertainty and Trade-offs in Resilience Assessments

    Get PDF
    Several frameworks have been developed to assess the resilience of social-ecological systems, but most require substantial data inputs, time, and technical expertise. Stakeholders and practitioners often lack the resources for such intensive efforts. Furthermore, most end with problem framing and fail to explicitly address trade-offs and uncertainty. To remedy this gap, we developed a rapid survey assessment that compares the relative resilience of social-ecological systems with respect to a number of resilience properties. This approach generates large amounts of information relative to stakeholder inputs. We targeted four stakeholder categories: government (policy, regulation, management), end users (farmers, ranchers, landowners, industry), agency/public science (research, university, extension), and NGOs (environmental, citizen, social justice) in four North American watersheds, to assess social-ecological resilience through surveys. Conceptually, social-ecological systems are comprised of components ranging from strictly human to strictly ecological, but that relate directly or indirectly to one another. They have soft boundaries and several important dimensions or axes that together describe the nature of social-ecological interactions, e.g., variability, diversity, modularity, slow variables, feedbacks, capital, innovation, redundancy, and ecosystem services. There is no absolute measure of resilience, so our design takes advantage of cross-watershed comparisons and therefore focuses on relative resilience. Our approach quantifies and compares the relative resilience across watershed systems and potential trade-offs among different aspects of the social-ecological system, e.g., between social, economic, and ecological contributions. This approach permits explicit assessment of several types of uncertainty (e.g., self-assigned uncertainty for stakeholders; uncertainty across respondents, watersheds, and subsystems), and subjectivity in perceptions of resilience among key actors and decision makers and provides an efficient way to develop the mental models that inform our stakeholders and stakeholder categories

    Resilience reconciled

    Get PDF
    Resilience scholarship continues to inspire opaque discourse and competing frameworks often inconsistent with the complexity inherent in social–ecological systems. We contend that competing conceptualizations of resilience are reconcilable, and that the core theory is useful for navigating sustainability challenges

    Biological invasions, ecological resilience and adaptive governance

    Get PDF
    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services

    Regime shifts and panarchies in regional scale social-ecological water systems

    Get PDF
    In this article we summarize histories of nonlinear, complex interactions among societal, legal, and ecosystem dynamics in six North American water basins, as they respond to changing climate. These case studies were chosen to explore the conditions for emergence of adaptive governance in heavily regulated and developed social-ecological systems nested within a hierarchical governmental system. We summarize resilience assessments conducted in each system to provide a synthesis and reference by the other articles in this special feature. We also present a general framework used to evaluate the interactions between society and ecosystem regimes and the governance regimes chosen to mediate those interactions. The case studies show different ways that adaptive governance may be triggered, facilitated, or constrained by ecological and/or legal processes. The resilience assessments indicate that complex interactions among the governance and ecosystem components of these systems can produce different trajectories, which include patterns of (a) development and stabilization, (b) cycles of crisis and recovery, which includes lurches in adaptation and learning, and (3) periods of innovation, novelty, and transformation. Exploration of cross scale (Panarchy) interactions among levels and sectors of government and society illustrate that they may constrain development trajectories, but may also provide stability during crisis or innovation at smaller scales; create crises, but may also facilitate recovery; and constrain system transformation, but may also provide windows of opportunity in which transformation, and the resources to accomplish it, may occur. The framework is the starting point for our exploration of how law might play a role in enhancing the capacity of social-ecological systems to adapt to climate change

    Adaptive capacity beyond the household: a systematic review of empirical social-ecological research

    Get PDF
    The concept of adaptive capacity has received significant attention within social-ecological and environmental change research. Within both the resilience and vulnerability literatures specifically, adaptive capacity has emerged as a fundamental concept for assessing the ability of social-ecological systems to adapt to environmental change. Although methods and indicators used to evaluate adaptive capacity are broad, the focus of existing scholarship has predominately been at the individual- and household- levels. However, the capacities necessary for humans to adapt to global environmental change are often a function of individual and societal characteristics, as well as cumulative and emergent capacities across communities and jurisdictions. In this paper, we apply a systematic literature review and co-citation analysis to investigate empirical research on adaptive capacity that focus on societal levels beyond the household. Our review demonstrates that assessments of adaptive capacity at higher societal levels are increasing in frequency, yet vary widely in approach, framing, and results; analyses focus on adaptive capacity at many different levels (e.g. community, municipality, global region), geographic locations, and cover multiple types of disturbances and their impacts across sectors. We also found that there are considerable challenges with regard to the ‘fit’ between data collected and analytical methods used in adequately capturing the cross-scale and cross-level determinants of adaptive capacity. Current approaches to assessing adaptive capacity at societal levels beyond the household tend to simply aggregate individual- or household-level data, which we argue oversimplifies and ignores the inherent interactions within and across societal levels of decision-making that shape the capacity of humans to adapt to environmental change across multiple scales. In order for future adaptive capacity research to be more practice-oriented and effectively guide policy, there is a need to develop indicators and assessments that are matched with the levels of potential policy applications

    Effects of Aging on the Biomechanics of Slips and Falls

    Get PDF
    Although much has been learned in recent decades about the deterioration of muscular strength, gait adaptations, and sensory degradation among older adults, little is known about how these intrinsic changes affect biomechanical parameters associated with slip-induced fall accidents. In general, the objective of this laboratory study was to investigate the process of initiation, detection, and recovery of inadvertent slips and falls. We examined the initiation of and recovery from foot slips among three age groups utilizing biomechanical parameters, muscle strength, and sensory measurements. Forty-two young, middle-age, and older participants walked around a walking track at a comfortable pace. Slippery floor surfaces were placed on the track over force platforms at random intervals without the participants’ awareness. Results indicated that younger participants slipped as often as the older participants, suggesting that the likelihood of slip initiation is similar across all age groups; however, older individuals’ recovery process was much slower and less effective. The ability to successfully recover from a slip (thus preventing a fall) is believed to be affected by lower extremity muscle strength and sensory degradation among older individuals. Results from this research can help pinpoint possible intervention strategies for improving dynamic equilibrium among older adults

    A Long-Term Vision for an Ecologically Sound Platte River

    Get PDF
    The Platte River extends about 310 mi (499 km) from North Platte, Nebraska, to its terminus at the Missouri River confluence near Plattsmouth, Nebraska. The Platte River Valley is a continentally significant ecosystem that serves as a major stopover for migratory waterbirds in the Central Flyway including the endangered Whooping Crane (Grus americana) and \u3e1 million Sandhill Cranes (Antigone canadensis) at the peak of spring migration. However, the Platte River Valley also supports a great diversity of avifauna including grassland breeding birds, native stream fish, vascular plants, herpetofauna, mammals, pollinators, and aquatic macroinvertebrates. Despite ongoing conservation efforts since the mid-1970s the ecosystem remains largely conservation dependent and an increasing number of species across taxa are being considered at risk of regional extirpation or outright extinction. However, given the attention provided to conservation in the Platte River Valley and the need to maintain ecologically functional stopover sites in the Central Flyway, there is a great opportunity to create a resilient refugium for biodiversity conservation in the central Great Plains. To that end we convened a working group of \u3e18 individuals representing \u3e9 organizations including representatives from non-profit conservation organizations, universities, and state and federal natural resource agencies to develop a long-term vision for an ecologically sound Platte River Valley (PRV). We met in groups of varying size for \u3e170 hours throughout a more than 3-year period and developed conservation priorities and objectives using a landscape design process. Landscape design is an interdisciplinary conservation planning process that incorporates components of landscape ecology and social dimensions of natural resources with the explicit intention of improving conservation implementation.https://digitalcommons.unl.edu/zeabook/1128/thumbnail.jp
    • …
    corecore