1,060 research outputs found

    Fatigue evaluation in maintenance and assembly operations by digital human simulation

    Get PDF
    Virtual human techniques have been used a lot in industrial design in order to consider human factors and ergonomics as early as possible. The physical status (the physical capacity of virtual human) has been mostly treated as invariable in the current available human simulation tools, while indeed the physical capacity varies along time in an operation and the change of the physical capacity depends on the history of the work as well. Virtual Human Status is proposed in this paper in order to assess the difficulty of manual handling operations, especially from the physical perspective. The decrease of the physical capacity before and after an operation is used as an index to indicate the work difficulty. The reduction of physical strength is simulated in a theoretical approach on the basis of a fatigue model in which fatigue resistances of different muscle groups were regressed from 24 existing maximum endurance time (MET) models. A framework based on digital human modeling technique is established to realize the comparison of physical status. An assembly case in airplane assembly is simulated and analyzed under the framework. The endurance time and the decrease of the joint moment strengths are simulated. The experimental result in simulated operations under laboratory conditions confirms the feasibility of the theoretical approach

    Engineering the Electronic Band Structure for Multiband Solar Cells

    Get PDF
    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications

    Localized Ionization Hypothesis for Transient Ionospheric Layers

    Get PDF
    The persistent two‐peaked vertical structure of the Martian ionosphere is created by extreme and far ultraviolet radiation whose energies respectively determine their ionization altitude. A third low‐altitude transient layer (previously referred to as M3 or Mm) has been observed by radio occultation techniques and attributed to meteor ablation. However, recent remote sensing and in‐situ observations disfavor a meteoric origin. Here we propose an alternative hypothesis for these apparent layers associated with impact ionization from penetrating solar wind ions, previously observed as proton aurora. Localized ionization, occurring non‐globally at a given altitude range, breaks the symmetry assumed by the radio occultation technique, and creates electron layers apparently lower in the ionosphere than their true altitude. This may occur when the upstream bowshock is altered by a radial interplanetary magnetic field configuration, which allows the solar wind to penetrate directly into the thermosphere. This localized ionization hypothesis provides an explanation for apparent layers’ wide variation in heights and their transient behavior. Moreover, this hypothesis is testable with new observations by the Mars Atmospheric and Volatile EvolutioN (MAVEN) Radio Occultation Science Experiment (ROSE) in future Mars years. This hypothesis has implications for the ionospheres of Venus and Titan, where similar transient layers have been observed

    Effects of Aging on the Biomechanics of Slips and Falls

    Get PDF
    Although much has been learned in recent decades about the deterioration of muscular strength, gait adaptations, and sensory degradation among older adults, little is known about how these intrinsic changes affect biomechanical parameters associated with slip-induced fall accidents. In general, the objective of this laboratory study was to investigate the process of initiation, detection, and recovery of inadvertent slips and falls. We examined the initiation of and recovery from foot slips among three age groups utilizing biomechanical parameters, muscle strength, and sensory measurements. Forty-two young, middle-age, and older participants walked around a walking track at a comfortable pace. Slippery floor surfaces were placed on the track over force platforms at random intervals without the participants’ awareness. Results indicated that younger participants slipped as often as the older participants, suggesting that the likelihood of slip initiation is similar across all age groups; however, older individuals’ recovery process was much slower and less effective. The ability to successfully recover from a slip (thus preventing a fall) is believed to be affected by lower extremity muscle strength and sensory degradation among older individuals. Results from this research can help pinpoint possible intervention strategies for improving dynamic equilibrium among older adults

    Study of the hydrogen escape rate at Mars during Martian years 28 and 29 from comparisons between SPICAM/Mars Express observations and GCM-LMD simulations

    Get PDF
    EPSC-DPS Joint Meeting 2019, held 15-20 September 2019 in Geneva, Switzerland, id. EPSC-DPS2019-499-2.- © Author(s) 2019. CC Attribution 4.0 license. https://creativecommons.org/licenses/by/4.0/deed.esWe simulate the 3D Martian hydrogen corona during the Martian years 28 and 29 at different solar longitudes using a set of models of atomic hydrogen density from the surface to the exosphere. These simulations are compared to Mars Express / SPICAM observations and show a strong underestimate of the brightness by our models near southern summer that could be due to an underestimate of the amount of water vapor delivered to the upper atmosphere at this season

    Deep-coverage whole genome sequences and blood lipids among 16,324 individuals.

    Get PDF
    Large-scale deep-coverage whole-genome sequencing (WGS) is now feasible and offers potential advantages for locus discovery. We perform WGS in 16,324 participants from four ancestries at mean depth >29X and analyze genotypes with four quantitative traits-plasma total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, and triglycerides. Common variant association yields known loci except for few variants previously poorly imputed. Rare coding variant association yields known Mendelian dyslipidemia genes but rare non-coding variant association detects no signals. A high 2M-SNP LDL-C polygenic score (top 5th percentile) confers similar effect size to a monogenic mutation (~30 mg/dl higher for each); however, among those with severe hypercholesterolemia, 23% have a high polygenic score and only 2% carry a monogenic mutation. At these sample sizes and for these phenotypes, the incremental value of WGS for discovery is limited but WGS permits simultaneous assessment of monogenic and polygenic models to severe hypercholesterolemia

    Retrieval of Ar, N2, O, and CO in the Martian Thermosphere Using Dayglow Limb Observations by EMM EMUS

    Get PDF
    The Emirates Ultraviolet Spectrometer (EMUS) onboard the Emirates Mars Mission (EMM) Hope probe images Mars at wavelengths extending from approximately 100 to 170 nm. EMUS observations began in February 2021 and cover over a full Mars year. We report the first limb scan observations at Mars of ultraviolet emissions Ar I 106.6 nm, N I 120 nm, and carbon monoxide (CO) Fourth Positive Group (A − X) band system excited by electron impact on CO. We use EMUS limb scan observations to retrieve number density profiles of argon, molecular nitrogen, atomic oxygen, and CO in the upper atmosphere of Mars from 130 to 160 km. CO is a sensitive tracer of the thermal profile and winds in Mars' middle atmosphere and the chemistry that balances CO2 in the atmosphere of Mars. EMUS insertion orbit special observations demonstrate that far ultraviolet limb measurements of the Martian thermosphere can be spectroscopically analyzed with a robust retrieval algorithm to further quantify variations of CO composition in the Martian upper atmosphere
    • 

    corecore