67 research outputs found

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Maxadilan Prevents Apoptosis in iPS Cells and Shows No Effects on the Pluripotent State or Karyotype

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. To study the physiological effects mediated by PAC1, we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC). After exposure to UVC, the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells, as demonstrated by WST-8 analysis, annexin V/propidium iodide (PI) analysis and the terminal transferase dUTP nick end labeling (TUNEL) assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly, immunofluorescence, western blot analysis, real-time quantitative polymerase chain reaction (RT-qPCR) analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover, karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary, these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype

    Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    Get PDF
    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans

    A Model of Attention and Interest Using Gaze Behavior

    No full text
    One of the major problems of user’s interaction with Embodied Conversational Agents (ECAs) is to have the conversation last more than few second:after being amused and intrigued by the ECAs, users may find rapidly the restrictions and limitations of the dialog systems, they may perceive the repetition of the ECAs animation, they may find the behaviors of ECAs to be inconsistent and implausible, etc. We believe that some special links, or bonds, have to be established between users and ECAs during interaction. It is our view that showing and/or perceiving interest is the necessary premise to establish a relationship. In this paper we present a model of an ECA able to establish, maintain and end the conversation based on its perception of the level of interest of its interlocutor

    Symmetrizing Smoothing Filters

    No full text

    Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide promote the genesis of calcium currents in differentiating mouse embryonic stem cells

    No full text
    International audienceIdentification of novel molecules that can induce neuronal differentiation of embryonic stem (ES) cells is essential for deciphering the molecular mechanisms of early development and for exploring cell therapy approaches. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are known to be implicated early during ontogenesis in cell proliferation and neuronal differentiation. The aim of the present study was to determine the effects of VIP and PACAP on functional differentiation of ES cells. Quantitative-reverse transcription-polymerase chain reaction analysis showed an inversion of the expression pattern of PAC1 and VPAC1 receptors with time. ES cells expressed genes encoding extracellular signal-regulated kinase 1 and 2 and c-jun amino terminal kinase1. ES cells also expressed T-type α1I and α1G, L-type α1C and α1D, and N-type α1B calcium channel subunit mRNAs. Both peptides modified the shape of undifferentiated ES cells into bipolar cells expressing the neuronal marker neuron-specific enolase (NSE). Immunostaining indicated that PACAP intensified T-type α1I subunit immunoreactivity, whereas VIP increased L-types α1C and α1D, as well as N-type α1B subunit. Electrophysiological recording showed that VIP and PACAP enhanced transient calcium current. Moreover, VIP generated sustained calcium current. These findings demonstrate that PACAP and VIP induce morphological and functional differentiation of ES cells into a neuronal phenotype. Both peptides promote functional maturation of calcium channel subunits, suggesting that they can facilitate the genesis of cellular excitability
    • 

    corecore