4,482 research outputs found
Coping with Poorly Understood Domains: the Example of Internet Trust
The notion of trust, as required for secure operations over the Internet, is important for ascertaining the source of received messages. How can we measure the degree of trust in authenticating the source? Knowledge in the domain is not established, so knowledge engineering becomes knowledge generation rather than mere acquisition. Special techniques are required, and special features of KBS software become more important than in conventional domains. This paper generalizes from experience with Internet trust to discuss some techniques and software features that are important for poorly understood domains
Study of the nucleon-induced preequilibrium reactions in terms of the Quantum Molecular Dynamics
The preequilibrium (nucleon-in, nucleon-out) angular distributions of
Al, Ni and Zr have been analyzed in the energy region from
90 to 200 MeV in terms of the Quantum Moleculear Dynamics (QMD) theory. First,
we show that the present approach can reproduce the measured (p,xp') and (p,xn)
angular distributions leading to continuous final states without adjusing any
parameters. Second, we show the results of the detailed study of the
preequilibrium reaction processes; the step-wise contribution to the angular
distribution, comparison with the quantum-mechanical Feshbach-Kerman-Koonin
theory, the effects of momentum distribution and surface refraction/reflection
to the quasifree scattering. Finally, the present method was used to assess the
importance of multiple preequilibrium particle emission as a function of
projectile energy up to 1 GeV.Comment: 22pages, Revex is used, 10 Postscript figures are available by
request from [email protected]
Predicting total reaction cross sections for nucleon-nucleus scattering
Nucleon total reaction and neutron total cross sections to 300 MeV for 12C
and 208Pb, and for 65 MeV spanning the mass range, are predicted using
coordinate space optical potentials formed by full folding of effective
nucleon-nucleon interactions with realistic nuclear ground state densities.
Good to excellent agreement is found with existing data.Comment: 10 pages, 4 figure
VHE Gamma Rays from PKS 2155-304
The close X-ray selected BL Lac PKS 2155-304 has been observed using the
University of Durham Mark 6 very high energy (VHE) gamma ray telescope during
1996 September/October/November and 1997 October/November. VHE gamma rays with
energy > 300 GeV were detected from this object with a time-averaged integral
flux of (4.2 +/- 0.7 (stat) +/- 2.0 (sys)) x 10^(-11) per cm2 per s. There is
evidence for VHE gamma ray emission during our observations in 1996 September
and 1997 October/November, with the strongest emission being detected in 1997
November, when the object was producing the largest flux ever recorded in
high-energy X-rays and was detected in > 100 MeV gamma-rays. The VHE and X-ray
fluxes show evidence of a correlation.Comment: 14 pages, 6 figures, accepted for publication in Ap.
Particle-hole state densities with non-equidistant single-particle levels
The correct use of energy-dependent single-particle level (s.p.l.) densities
within particle-hole state densities based on the equidistant spacing model
(ESM) is analysed. First, an analytical expression is obtained following the
convolution of energy-dependent excited-particle and hole densities. Next, a
comparison is made with results of the ESM formula using average s.p.l.
densities for the excited particles and holes, respectively. The Fermi-gas
model (FGM) s.p.l. densities calculated at the corresponding average excitation
energies are used in both cases. The analysis concerns also the density of
particle-hole bound states. The pairing correlations are taken into account
while the comparison of various effects includes the exact correction for the
Pauli exclusion principle. Quantum-mechanical s.p.l. densities and the
continuum effect can also match a corresponding FGM formula, suitable for use
within the average energy-dependent partial state density in multistep reaction
models.Comment: 29 pages, ReVTeX, 11 postscript figures, submitted to Phys.Rev.
Narrative, identity, and recovery from serious mental illness: A life history of a runner
In recent years, researchers have investigated the psychological effects of exercise for people with mental health problems, often by focusing on how exercise may alleviate symptoms of mental illness. In this article I take a different tack to explore the ways in which exercise contributed a sense of meaning, purpose, and identity to the life of one individual named Ben, a runner diagnosed with schizophrenia. Drawing on life history data, I conducted an analysis of narrative to explore the narrative types that underlie Ben's stories of mental illness and exercise. For Ben, serious mental illness profoundly disrupted a pre-existing athletic identity removing agency, continuity, and coherence from his life story. By returning to exercise several years later, Ben reclaimed his athletic identity and reinstated some degree of narrative agency, continuity, and coherence. While the relationships between narrative, identity, and mental health are undoubtedly complex, Ben's story suggests that exercise can contribute to recovery by being a personally meaningful activity which reinforces identity and sense of self
GIT2 Acts as a Potential Keystone Protein in Functional Hypothalamic Networks Associated with Age-Related Phenotypic Changes in Rats
The aging process affects every tissue in the body and represents one of the most complicated and highly integrated inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has demonstrated that the optimal regulation of energy usage in both these systems facilitates healthy aging. However, the proteomic effects of aging in regions of the brain vital for integrating energy balance and neuronal activity are not well understood. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity. Therefore, a greater understanding of the effects of aging in the hypothalamus may reveal important aspects of overall organismal aging and may potentially reveal the most crucial protein factors supporting this vital signaling integration. In this study, we examined alterations in protein expression in the hypothalami of young, middle-aged, and old rats. Using novel combinatorial bioinformatics analyses, we were able to gain a better understanding of the proteomic and phenotypic changes that occur during the aging process and have potentially identified the G protein-coupled receptor/cytoskeletal-associated protein GIT2 as a vital integrator and modulator of the normal aging process
Instability and `Sausage-String' Appearance in Blood Vessels during High Blood Pressure
A new Rayleigh-type instability is proposed to explain the `sausage-string'
pattern of alternating constrictions and dilatations formed in blood vessels
under influence of a vasoconstricting agent. Our theory involves the nonlinear
elasticity characteristics of the vessel wall, and provides predictions for the
conditions under which the cylindrical form of a blood vessel becomes unstable.Comment: 4 pages, 4 figures submitted to Physical Review Letter
Storage of Carbon Dioxide in Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential
Full text available at: https://www.annualreviews.org/doi/10.1146/annurev-chembioeng-093020-091447CO2 storage in saline aquifers offers a realistic means of achieving globally significant reductions in greenhouse gas emissions at the scale of billions of tonnes per year. We review insights into the processes involved using well-documented industrial-scale projects, supported by a range of laboratory analyses, field studies, and flow simulations. The main topics we address are (a) the significant physicochemical processes, (b) the factors limiting CO2 storage capacity, and (c) the requirements for global scale-up.Although CO2 capture and storage (CCS) technology can be considered mature and proven, it requires significant and rapid scale-up to meet the objectives of the Paris Climate Agreement. The projected growth in the number of CO2 injection wells required is significantly lower than the historic petroleum industry drill rates, indicating that decarbonization via CCS is a highly credible and affordable ambition for modern human society. Several technology developments are needed to reduce deployment costs and to stimulate widespread adoption of this technology, and these should focus on demonstration of long-term retention and safety of CO2 storage and development of smart ways of handling injection wells and pressure, cost-effective monitoring solutions, and deployment of CCS hubs with associated infrastructure.Bureau of Economic Geolog
‘‘Cooling by Heating’’- Demonstrating the Significance of the Longitudinal Specific Heat
Heating a solid sphere at its surface induces mechanical stresses inside the sphere. If a finite amount of heat is supplied, the stresses gradually disappear as temperature becomes homogeneous throughout the sphere. We show that before this happens, there is a temporary lowering of pressure and density in the interior of the sphere, inducing a transient lowering of the temperature here. For ordinary solids this effect is small because c_{p}≅c_{V}. For fluent liquids the effect is negligible because their dynamic shear modulus vanishes. For a liquid at its glass transition, however, the effect is generally considerably larger than in solids. This paper presents analytical solutions of the relevant coupled thermoviscoelastic equations. In general, there is a difference between the isobaric specific heat c_{p} measured at constant isotropic pressure and the longitudinal specific heat c_{l} pertaining to mechanical boundary conditions that confine the associated expansion to be longitudinal. In the exact treatment of heat propagation, the heat-diffusion constant contains c_{l} rather than c_{p}. We show that the key parameter controlling the magnitude of the “cooling-by-heating“ effect is the relative difference between these two specific heats. For a typical glass-forming liquid, when the temperature at the surface is increased by 1 K, a lowering of the temperature at the sphere center of the order of 5 mK is expected if the experiment is performed at the glass transition. The cooling-by-heating effect is confirmed by measurements on a glucose sphere at the glass transition
- …