146 research outputs found

    Portable Surface Plasmon Resonance Biosensor for Detection of Nucleic Acids

    Get PDF
    AbstractWe present a portable surface plasmon resonance (SPR) sensor based on spectroscopy of surface plasmons on a special diffractive structure. The sensor combines a microfluidic cartridge incorporating the special diffractive structure functionalized with DNA probes and a compact SPR reader. We apply the sensor to detection of nucleic acids employing two most common immobilization methods: (a) biotinylated probes immobilized using the biotin-streptavidin chemistry and (b) thiolated probes attached directly to the surface of the SPR sensor. It is demonstrated that both these immobilization methods allow detecting short nucleic acids at levels below 100 pM

    PPINGUIN: Peptide Profiling Guided Identification of Proteins improves quantitation of iTRAQ ratios

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent development of novel technologies paved the way for quantitative proteomics. One of the most important among them is iTRAQ, employing isobaric tags for relative or absolute quantitation. Despite large progress in technology development, still many challenges remain for derivation and interpretation of quantitative results. One of these challenges is the consistent assignment of peptides to proteins.</p> <p>Results</p> <p>We have developed Peptide Profiling Guided Identification of Proteins (PPINGUIN), a statistical analysis workflow for iTRAQ data addressing the problem of ambiguous peptide quantitations. Motivated by the assumption that peptides uniquely derived from the same protein are correlated, our method employs clustering as a very early step in data processing prior to protein inference. Our method increases experimental reproducibility and decreases variability of quantitations of peptides assigned to the same protein. Giving further support to our method, application to a type 2 diabetes dataset identifies a list of protein candidates that is in very good agreement with previously performed transcriptomics meta analysis. Making use of quantitative properties of signal patterns identified, PPINGUIN can reveal new isoform candidates.</p> <p>Conclusions</p> <p>Regarding the increasing importance of quantitative proteomics we think that this method will be useful in practical applications like model fitting or functional enrichment analysis. We recommend to use this method if quantitation is a major objective of research.</p

    Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development

    Get PDF
    Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis

    TBC1D1 Regulates Insulin- and Contraction-Induced Glucose Transport in Mouse Skeletal Muscle

    Get PDF
    OBJECTIVE: TBC1D1 is a member of the TBC1 Rab-GTPase family of proteins and is highly expressed in skeletal muscle. Insulin and contraction increase TBC1D1 phosphorylation on phospho-Akt substrate motifs (PASs), but the function of TBC1D1 in muscle is not known. Genetic linkage analyses show a TBC1D1 R125W missense variant confers risk for severe obesity in humans. The objective of this study was to determine whether TBC1D1 regulates glucose transport in skeletal muscle. RESEARCH DESIGN AND METHODS: In vivo gene injection and electroporation were used to overexpress wild-type and several mutant TBC1D1 proteins in mouse tibialis anterior muscles, and glucose transport was measured in vivo. RESULTS: Expression of the obesity-associated R125W mutant significantly decreased insulin-stimulated glucose transport in the absence of changes in TBC1D1 PAS phosphorylation. Simultaneous expression of an inactive Rab-GTPase (GAP) domain of TBC1D1 in the R125W mutant reversed this decrease in glucose transport caused by the R125W mutant. Surprisingly, expression of TBC1D1 mutated to Ala on four conserved Akt and/or AMP-activated protein kinase predicted phosphorylation sites (4P) had no effect on insulin-stimulated glucose transport. In contrast, expression of the TBC1D1 4P mutant decreased contraction-stimulated glucose transport, an effect prevented by concomitant disruption of TBC1D1 Rab-GAP activity. There was no effect of the R125W mutation on contraction-stimulated glucose transport. CONCLUSIONS: TBC1D1 regulates both insulin- and contraction-stimulated glucose transport, and this occurs via distinct mechanisms. The R125W mutation of TBC1D1 impairs skeletal muscle glucose transport, which could be a mechanism for the obesity associated with this mutation

    Overexpressing high levels of human vaspin limits high fat diet-induced obesity and enhances energy expenditure in a transgenic mouse

    Get PDF
    Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (&gt;200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease

    Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity

    Get PDF
    AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosinebinding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues.

    Get PDF
    AS160 (Akt substrate of 160 kDa) is a Rab GTPase-activating protein implicated in insulin control of GLUT4 (glucose transporter 4) trafficking. In humans, a truncation mutation (R363X) in one allele of AS160 decreased the expression of the protein and caused severe postprandial hyperinsulinaemia during puberty. To complement the limited studies possible in humans, we generated an AS160-knockout mouse. In wild-type mice, AS160 expression is relatively high in adipose tissue and soleus muscle, low in EDL (extensor digitorum longus) muscle and detectable in liver only after enrichment. Despite having lower blood glucose levels under both fasted and random-fed conditions, the AS160-knockout mice exhibited insulin resistance in both muscle and liver in a euglycaemic clamp study. Consistent with this paradoxical phenotype, basal glucose uptake was higher in AS160-knockout primary adipocytes and normal in isolated soleus muscle, but their insulin-stimulated glucose uptake and overall GLUT4 levels were markedly decreased. In contrast, insulin-stimulated glucose uptake and GLUT4 levels were normal in EDL muscle. The liver also contributes to the AS160-knockout phenotype via hepatic insulin resistance, elevated hepatic expression of phosphoenolpyruvate carboxykinase isoforms and pyruvate intolerance, which are indicative of increased gluconeogenesis. Overall, as well as its catalytic function, AS160 influences expression of other proteins, and its loss deregulates basal and insulin-regulated glucose homoeostasis, not only in tissues that normally express AS160, but also by influencing liver function
    corecore