39 research outputs found

    Development of a minimization instrument for allocation of a hospital-level performance improvement intervention to reduce waiting times in Ontario emergency departments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED) waiting times in Ontario, Canada.</p> <p>Methods</p> <p>Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management) panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition.</p> <p>Results</p> <p>An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal.</p> <p>Conclusion</p> <p>We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.</p

    Early implementation of the US Forest Service's shared stewardship strategy in the Eastern United States

    Get PDF
    38 pagesIn 2018, in response to Congress’ calls for a renewed approach to forest management, the U.S. Forest Service (USFS) announced the Shared Stewardship Strategy - an initiative aimed at increasing the pace and scale of cross-boundary forest management activities (USFS, 2018). In 2019, our team started conducting independent research through semi-structured interviews on the implementation and development of Shared Stewardship efforts in the western U.S. (Phase 1, detailed in Kooistra et al., 2021b). In late 2020, we began investigating states east of the Rocky Mountains (Phase 2), which we refer to herein for ease as “eastern” or “Phase 2” states, although our study included states as far west as Nebraska. This Executive Summary provides an overview of our key findings across Phase 2 states (also see Table A) and our observations on the future of Shared Stewardship.This study was made possible with funding from the USDA Forest Service State and Private Forestry and Rocky Mountain Research Station

    Applying diagnosis and pharmacy-based risk models to predict pharmacy use in Aragon, Spain: The impact of a local calibration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the financing of a national health system, where pharmaceutical spending is one of the main cost containment targets, predicting pharmacy costs for individuals and populations is essential for budget planning and care management. Although most efforts have focused on risk adjustment applying diagnostic data, the reliability of this information source has been questioned in the primary care setting. We sought to assess the usefulness of incorporating pharmacy data into claims-based predictive models (PMs). Developed primarily for the U.S. health care setting, a secondary objective was to evaluate the benefit of a local calibration in order to adapt the PMs to the Spanish health care system.</p> <p>Methods</p> <p>The population was drawn from patients within the primary care setting of Aragon, Spain (n = 84,152). Diagnostic, medication and prior cost data were used to develop PMs based on the Johns Hopkins ACG methodology. Model performance was assessed through r-squared statistics and predictive ratios. The capacity to identify future high-cost patients was examined through c-statistic, sensitivity and specificity parameters.</p> <p>Results</p> <p>The PMs based on pharmacy data had a higher capacity to predict future pharmacy expenses and to identify potential high-cost patients than the models based on diagnostic data alone and a capacity almost as high as that of the combined diagnosis-pharmacy-based PM. PMs provided considerably better predictions when calibrated to Spanish data.</p> <p>Conclusion</p> <p>Understandably, pharmacy spending is more predictable using pharmacy-based risk markers compared with diagnosis-based risk markers. Pharmacy-based PMs can assist plan administrators and medical directors in planning the health budget and identifying high-cost-risk patients amenable to care management programs.</p

    Assessing socioeconomic health care utilization inequity in Israel: impact of alternative approaches to morbidity adjustment

    Get PDF
    <p/> <p>Background</p> <p>The ability to accurately detect differential resource use between persons of different socioeconomic status relies on the accuracy of health-needs adjustment measures. This study tests different approaches to morbidity adjustment in explanation of health care utilization inequity.</p> <p>Methods</p> <p>A representative sample was selected of 10 percent (~270,000) adult enrolees of Clalit Health Services, Israel's largest health care organization. The Johns-Hopkins University Adjusted Clinical Groups<sup>® </sup>were used to assess each person's overall morbidity burden based on one year's (2009) diagnostic information. The odds of above average health care resource use (primary care visits, specialty visits, diagnostic tests, or hospitalizations) were tested using multivariate logistic regression models, separately adjusting for levels of health-need using data on age and gender, comorbidity (using the Charlson Comorbidity Index), or morbidity burden (using the Adjusted Clinical Groups). Model fit was assessed using tests of the Area Under the Receiver Operating Characteristics Curve and the Akaike Information Criteria.</p> <p>Results</p> <p>Low socioeconomic status was associated with higher morbidity burden (1.5-fold difference). Adjusting for health needs using age and gender or the Charlson index, persons of low socioeconomic status had greater odds of above average resource use for all types of services examined (primary care and specialist visits, diagnostic tests, or hospitalizations). In contrast, after adjustment for overall morbidity burden (using Adjusted Clinical Groups), low socioeconomic status was no longer associated with greater odds of specialty care or diagnostic tests (OR: 0.95, CI: 0.94-0.99; and OR: 0.91, CI: 0.86-0.96, for specialty visits and diagnostic respectively). Tests of model fit showed that adjustment using the comprehensive morbidity burden measure provided a better fit than age and gender or the Charlson Index.</p> <p>Conclusions</p> <p>Identification of socioeconomic differences in health care utilization is an important step in disparity reduction efforts. Adjustment for health-needs using a comprehensive morbidity burden diagnoses-based measure, this study showed relative underutilization in use of specialist and diagnostic services, and thus allowed for identification of inequity in health resources use, which could not be detected with less comprehensive forms of health-needs adjustments.</p

    Dynamic versus Instantaneous Models of Diet Choice

    Get PDF
    We investigate the dynamics of a series of two-prey-one predator models in which the predator exhibits adaptive diet choice based on the different energy contents and/or handling times of the two prey species. The predator is efficient at exploiting its prey and has a saturating functional response; these two features combine to produce sustained population cycles over a wide range of parameter values. Two types of models of behavioral change are compared. In one class of models (“instantaneous choice”), the probability of acceptance of the poorer prey by the predator instantaneously approximates the optimal choice, given current prey densities. In the second class of models (“dynamic choice”), the probability of acceptance of the poorer prey is a dynamic variable, which begins to change in an adaptive direction when prey densities change but which requires a finite amount of time to approach the new optimal behavior. The two types of models frequently predict qualitatively different population dynamics of the three-species system, with chaotic dynamics and complex cycles being a common outcome only in the dynamic choice models. In dynamic choice models, factors that reduce the rate of behavioral change when the probability of accepting the poorer prey approaches extreme values often produce complex population dynamics. Instantaneous and dynamic models often predict different average population densities and different indirect interactions between prey species. Alternative dynamic models of behavior are analyzed and suggest, first, that instantaneous choice models may be good approximations in some circumstances and, second, that different types of dynamic choice models often lead to significantly different population dynamics. The results suggest possible behavioral mechanisms leading to complex population dynamics and highlight the need for more empirical study of the dynamics of behavioral change
    corecore