52 research outputs found

    Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data

    Get PDF
    We present a new tropospheric ozone dataset based on TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P) total ozone measurements combined with stratospheric ozone data from the Belgian Assimilation System for Chemical ObsErvations (BASCOE) constrained by assimilating ozone observations from the Microwave Limb Sounder (MLS). The BASCOE stratospheric data are interpolated to the S5P observations and subtracted from the TROPOMI total ozone data. The difference is equal to the tropospheric ozone residual column from the surface up to the tropopause. The tropospheric ozone columns are retrieved at the full spatial resolution of the TROPOMI sensor (5.5×3.5 km2) with daily global coverage. Compared to the Ozone Mapping and Profiler Suite Modern-Era Retrospective analysis for Research and Applications 2 (OMPS-MERRA-2) data, a global mean positive bias of 3.3 DU is found for the analysed period April 2018 to June 2020. A small negative bias of about −0.91 DU is observed in the tropics relative to the operational TROPOMI tropical tropospheric data based on the convective cloud differential (CCD) algorithm throughout the same period. The new tropospheric ozone data (S5P-BASCOE) are compared to a set of globally distributed ozonesonde data integrated up to the tropopause level. We found 2254 comparisons with cloud-free TROPOMI observations within 25 km of the stations. In the global mean, S5P-BASCOE deviates by 2.6 DU from the integrated ozonesondes. Depending on the latitude the S5P-BASCOE deviate from the sondes and between −4.8 and 7.9 DU, indicating a good agreement. However, some exceptional larger positive deviations up to 12 DU are found, especially in the northern polar regions (north of 70∘). The monthly mean tropospheric column and time series for selected areas showed the expected spatial and temporal pattern, such as the wave one structure in the tropics or the seasonal cycle, including a summer maximum, in the mid-latitudes.</p

    Evaluation of the N2_2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model

    Get PDF
    The Brewer-Dobson Circulation (BDC) determines the distribution of long-lived tracers in the stratosphere; therefore, their changes can be used to diagnose changes in the BDC. We evaluate decadal (2005–2018) trends of nitrous oxide (N2_2O) in two versions of the Whole Atmosphere Chemistry-Climate Model (WACCM) by comparing them with measurements from four Fourier transform infrared (FTIR) ground-based instruments, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and with a chemistry-transport model (CTM) driven by four different reanalyses. The limited sensitivity of the FTIR instruments can hide negative N2_2O trends in the mid-stratosphere because of the large increase in the lowermost stratosphere. When applying ACE-FTS measurement sampling on model datasets, the reanalyses from the European Center for Medium Range Weather Forecast (ECMWF) compare best with ACE-FTS, but the N2_2O trends are consistently exaggerated. The N2_2O trends obtained with WACCM disagree with those obtained from ACE-FTS, but the new WACCM version performs better than the previous above the Southern Hemisphere in the stratosphere. Model sensitivity tests show that the decadal N2_2O trends reflect changes in the stratospheric transport. We further investigate the N2_2O Transformed Eulerian Mean (TEM) budget in WACCM and in the CTM simulation driven by the latest ECMWF reanalysis. The TEM analysis shows that enhanced advection affects the stratospheric N2_2O trends in the Tropics. While no ideal observational dataset currently exists, this model study of N2_2O trends still provides new insights about the BDC and its changes because of the contribution from relevant sensitivity tests and the TEM analysis

    Improved FTIR retrieval strategy for HCFC-22 (CHClF₂), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch

    Get PDF
    Hydrochlorofluorocarbons (HCFCs) are the first, but temporary, substitution products for the strong ozone-depleting chlorofluorocarbons (CFCs). HCFC consumption and production are currently regulated under the Montreal Protocol on Substances that Deplete the Ozone Layer and their emissions have started to stabilize or even decrease. As HCFC-22 (CHClF2) is by far the most abundant HCFC in today\u27s atmosphere, it is crucial to continue to monitor the evolution of its atmospheric concentration. In this study, we describe an improved HCFC-22 retrieval strategy from ground-based high-resolution Fourier transform infrared (FTIR) solar spectra recorded at the high-altitude scientific station of Jungfraujoch, the Swiss Alps, 3580 m a.m.s.l. (above mean sea level). This new strategy distinguishes tropospheric and lower-stratospheric partial columns. Comparisons with independent datasets, such as the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), supported by models, such as the Belgian Assimilation System for Chemical ObErvation (BASCOE) and the Whole Atmosphere Community Climate Model (WACCM), demonstrate the validity of our tropospheric and lower-stratospheric long-term time series. A trend analysis on the datasets used here, now spanning 30 years, confirms the last decade\u27s decline in the HCFC-22 growth rate. This updated retrieval strategy can be adapted for other ozone-depleting substances (ODSs), such as CFC-12. Measuring or retrieving ODS atmospheric concentrations is essential for scrutinizing the fulfilment of the globally ratified Montreal Protocol

    Tropospheric ozone column data records based on total columns from GOME, SCIAMACHY, GOME-2, OMI and TROPOMI using CCD algorithm or in combination with BASCOE/MLS

    Get PDF
    A long-term tropospheric ozone time series has been generated for the tropical band (20°S to 20°N) based on convective cloud differential algorithm (CCD). Tropical tropospheric ozone columns were retrieved from several European sensors starting with observations by GOME in 1995 and including data from SCIAMACHY, OMI, GOME-2A and GOME-2B. It has now been extended by DLR with data from GOME-2C and TROPOMI and now encompasses 25 years. The tropospheric ozone retrieval for all data sets is based on the total columns retrieved with the GODFIT algorithm and associated cloud products. There are however some differences between the different tropospheric columns from the different sensors which have to be corrected for. For the CCD time series, we used SCIAMACHY data as reference and fitted an offset and a trend correction to the data of the other sensors. We estimated the trend based on the long-term time series. For the tropics an overall trend of +0.7 DU/decade was found in the data set until 2019, varying locally between -0.5 and 1.8 DU/decade. The second data record combines total ozone columns from TROPOMI with BASCOE stratospheric ozone profiles. BASCOE stratospheric ozone data is constrained by assimilated Aura MLS observation and it is provided with 3-hour time resolutions in NRT. We used the BASCOE NRT data set to calculate the stratospheric ozone columns for every day from April 2018 to December 2020 and subtracted it from the respective NRT total columns observed by TROPOMI. The TROPOMI NRT total ozone product was updated recently including a new surface albedo retrieval algorithm. An internal reanalysis of the NRT data was used to create a consistent tropospheric ozone data set. A comparison to ozone sondes showed a good agreement for most part of the world. For the GEMS validation the TROPOMI total ozone NRT algorithm is applied to selected the GEMS data. Also, the tropospheric ozone column might be retrieved based on the TROPOMI-BASCOE algorithm described above. Both the CCD and the TROPOMI-BASCOE tropospheric ozone data will be presented. Furthermore, first results for total and troposheric ozone columns of GEMS data using the TROPOMI algorithms might be shown

    Evaluation of the N2O Rate of Change to Understand the Stratospheric Brewer‐Dobson Circulation in a Chemistry‐Climate Model

    Get PDF
    peer reviewedThe Brewer-Dobson Circulation (BDC) determines the distribution of long-lived tracers in the stratosphere; therefore, their changes can be used to diagnose changes in the BDC. We evaluate decadal (2005–2018) trends of nitrous oxide (N2O) in two versions of the Whole Atmosphere Chemistry-Climate Model (WACCM) by comparing them with measurements from four Fourier transform infrared (FTIR) ground-based instruments, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and with a chemistry-transport model (CTM) driven by four different reanalyses. The limited sensitivity of the FTIR instruments can hide negative N2O trends in the mid-stratosphere because of the large increase in the lowermost stratosphere. When applying ACE-FTS measurement sampling on model datasets, the reanalyses from the European Center for Medium Range Weather Forecast (ECMWF) compare best with ACE-FTS, but the N2O trends are consistently exaggerated. The N2O trends obtained with WACCM disagree with those obtained from ACE-FTS, but the new WACCM version performs better than the previous above the Southern Hemisphere in the stratosphere. Model sensitivity tests show that the decadal N2O trends reflect changes in the stratospheric transport. We further investigate the N2O Transformed Eulerian Mean (TEM) budget in WACCM and in the CTM simulation driven by the latest ECMWF reanalysis. The TEM analysis shows that enhanced advection affects the stratospheric N2O trends in the Tropics. While no ideal observational dataset currently exists, this model study of N2O trends still provides new insights about the BDC and its changes because of the contribution from relevant sensitivity tests and the TEM analysis

    First year EnMAP radiometric performance based on scenes over RadCalNet and PICS sites

    Get PDF
    The radiometric performance of EnMAP is presented based on scenes over RadCalNet and PICS sites acquired during the first year since launch. The results show the typical accuracy and stability attainable by EnMAP radiometric products

    Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems

    Get PDF
    The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue The SPARC Reanalysis Intercomparison Project (S-RIP) in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports

    The EnMAP imaging spectroscopy mission towards operations

    Get PDF
    EnMAP (Environmental Mapping and Analysis Program) is a high-resolution imaging spectroscopy remote sensing mission that was successfully launched on April 1st, 2022. Equipped with a prism-based dual-spectrometer, EnMAP performs observations in the spectral range between 418.2 nm and 2445.5 nm with 224 bands and a high radiometric and spectral accuracy and stability. EnMAP products, with a ground instantaneous field-of-view of 30 m x 30 m at a swath width of 30 km, allow for the qualitative and quantitative analysis of surface variables from frequently and consistently acquired observations on a global scale. This article presents the EnMAP mission and details the activities and results of the Launch and Early Orbit and Commissioning Phases until November 1st, 2022. The mission capabilities and expected performances for the operational Routine Phase are provided for existing and future EnMAP users
    corecore