498 research outputs found

    Time-domain Brillouin Scattering as a Local Temperature Probe in Liquids

    Full text link
    We present results of time-domain Brillouin scattering (TDBS) to determine the local temperature of liquids in contact to an optical transducer. TDBS is based on an ultrafast pump-probe technique to determine the light scattering frequency shift caused by the propagation of coherent acoustic waves in a sample. Since the temperature influences the Brillouin scattering frequency shift, the TDBS signal probes the local temperature of the liquid. Results for the extracted Brillouin scattering frequencies recorded at different liquid temperatures and at different laser powers - i.e. different steady state background temperatures- are shown to demonstrate the usefulness of TDBS as a temperature probe. This TDBS experimental scheme is a first step towards the investigation of ultrathin liquids measured by GHz ultrasonic probing.Comment: arXiv admin note: substantial text overlap with arXiv:1702.0107

    On the Structure and Stability of Geometrical Isomers of N3F

    Get PDF
    The potential energy surfaces for the N3F molecule have been studied using multiconfigurational wave functions. Two new isomers were found, one on the singlet (1 A′) and one on the triplet (3 A″) surface. Both isomers have a three‐membered cyclic structure and C ssymmetry. The singlet cyclic isomer is endoergic relative to the open fluorine azide by 15–17 kcal/mol. Its kinetic stability is close to the stability of the open isomer: the barrier separating the cyclic isomer from the dissociation products N2(X  1Σ+ g )+NF(a  1Δ) is about 13–17 kcal/mol and is lower than the barrier to isomerization. The triplet cyclic isomer is much higher in energy (about 70 kcal/mol), with a barrier to dissociation to N2(X  1Σ+ g )+NF(X  3Σ−) on the order of 15 kcal/mol. Crossings of the 1 A′ and the 3 A″ surfaces may allow the cyclic singlet isomer to predissociate to the ground state products, N2(X  1Σ+ g )+NF(X  3Σ−). It is shown, however, that the singlet–triplet surface of intersection lies ‘behind’ the barrier to singlet decomposition, so that spin‐forbidden predissociation will not preclude detection of cyclic N3F

    A combined non-invasive approach to the study of a mosaic model: First laboratory experimental results

    Get PDF
    This paper presents first laboratory results of a combined approach carried out by the use of three different portable non-invasive electromagnetic methods: Digital holographic speckle pattern interferometry (DHSPI), stimulated infrared thermography (SIRT) and holographic subsurface radar (HSR), proposed for the analysis of a custom-built wall mosaic model. The model reproduces a series of defects (e.g., cracks, voids, detachments), simulating common deteriorated, restored or reshuffled areas in wall mosaics. DHSPI and SIRT, already well known in the field of non-destructive (NDT) methods, are full-field contactless techniques, providing complementary information on the subsurface hidden discontinuities. The use of DHSPI, based on optical imaging and interferometry, provides remote control and visualization of surface micro-deformation after induced thermal stress, while the use of SIRT allows visualization of thermal energy diffusion in the surface upon the induced thermal stress. DHSPI and SIRT data are complemented by the use of HSR, a contact method that provides localized information about the distribution of contrasts in dielectric permittivity and related possible anomalies. The experimental results, made by the combined use of these methods to the identification of the known anomalies in the mosaic model, are presented and discussed here as a contribution in the development of an efficient non-invasive approach to the in-situ subsurface analysis of ancient wall mosaics

    DNA induces conformational changes in a recombinant human minichromosome maintenance complex

    Get PDF
    ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has only been observed in the context of a co-purified Cdc45-MCM-GINS (CMG) complex. Here we describe the production of recombinant human MCM complex (hMCM) in E. coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single particle asymmetric electron microscopy reconstruction, we demonstrate recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for the biochemical reconstitution of the human replicative helicase

    Photodissociation Dynamics of Molecular Fluorine in an Argon Matrix Induced by Ultrashort Laser Pulses

    Get PDF
    The electronic excitation induced by ultrashort laser pulses and the subsequent photodissociation dynamics of molecular fluorine in an argon matrix are studied. The interactions of photofragments and host atoms are modeled using a Diatomics-In-Molecule Hamiltonian. Two types of methods are compared: Quantum-classical simulations where the nuclei are treated classically, with surface-hopping algorithms to describe either radiative or non-radiative transitions between different electronic states. Fully quantum-mechanical simulations, but for a model system of reduced dimensionality, in which the two most essential degrees of freedom are considered. Some of the main results are: The sequential energy transfer events from the photoexcited F2 into the lattice modes are such that the ``reduced dimensionality'' model is valid for the first 200 fs. This, in turn, allows us to use the quantum results to investigate the details of the excitation process with short laser pulses. Thus, it also serves as a reference for the quantum-classical ``surface hopping'' model of the excitation process. Moreover, it supports the validity of a laser pulse control strategy developed on the basis of the ``reduced dimensionality'' model. Both in the quantum and quantum-classical simulations, the separation of the F atoms following photodissociation does not exceed 20 bohr. The cage exit mechanisms appear qualitatively similar in the two sets of simulations but quantum effects are quantitatively important. Nonlinear effects are important in determining the photoexcitation yield. In summary, this paper demonstrates that quantum-classical simulations combined with reduced dimensionality quantum calculations can be a powerful approach to the analysis and control of the dynamics of complex systems

    Optical precursors in transparent media

    Full text link
    We theoretically study the linear propagation of a stepwise pulse through a dilute dispersive medium when the frequency of the optical carrier coincides with the center of a natural or electromagnetically induced transparency window of the medium (slow-light systems). We obtain fully analytical expressions of the entirety of the step response and show that, for parameters representative of real experiments, Sommerfeld-Brillouin precursors, main field and second precursors "postcursors" can be distinctly observed, all with amplitudes comparable to that of the incident step. This behavior strongly contrasts with that of the systems generally considered up to now

    On the Development of a New Nonequilibrium Chemistry Model for Mars Entry

    Get PDF
    This paper represents a summary of results to date of an on-going effort at NASA Ames Research Center to develop a physics-based non-equilibrium model for hypersonic entry into the Martian atmosphere. Our approach is to first compute potential energy surfaces based on accurate solutions of the electronic Schroedinger equation and then use quasiclassical trajectory calculations to obtain reaction cross sections and rate coefficients based on these potentials. We have presented new rate coefficients for N2 dissociation and CO dissociation and exchange reactions. These results illustrate shortcomings with some of the rate coefficients in Parks original T-Tv model for Mars entries and with some of the 30-45 year old shock tube data. We observe that the shock tube experiments of CO + O dissociation did not adequately account for the exchange reaction that leads to formation of C + O2. This reaction is actually the primary channel for CO removal in the shock layer at temperatures below 10,000 K, because the reaction enthalpy for exchange is considerably lower than the comparable value for dissociation

    A Natural Orbital Diagnostic for Multiconfigurational Character in Correlated Wave Functions

    Get PDF
    The natural orbitals and their corresponding occupation numbers are constructed for several interesting problems to demonstrate that the existence of negative natural orbital occupation numbers for single reference correlation methods provides a simple diagnostic for the need for a multiconfigurational description of the wave function

    Anticorrosion Protection by Amine-Ionic Liquid Mixtures: Experiments and Simulations

    Get PDF
    The mixtures of aqueous amines and ionic liquids (ILs) are considered as potential solvents for CO2 capture. We report corrosion and CO2 absorption behavior of the mixed IL-amine solutions. The absorption tests were performed at 318.15 K under 0.1-2.7 MPa. The corrosion tests were carried out at 318.15 K under 2.7 MPa. Addition of [bmim][BF4] in aqueous alkanolamine solutions reduces corrosion rate for MEA by up to 72%. The CO, absorption capacity in the mixtures falls between those of aqueous MDEA and pure IL. These results allow to choose the working pressure range as a function of other parameters, such as gas pressure and mixture viscosity. According to the simulations, [bmim][BF4] participates in the gas capture through H-bonding, although the number of amine molecules is enough to capture all supplied CO, molecules. The equilibrium of the chemisorption reaction is, therefore, modified upon the stepwise IL addition. An ideal IL content for preventing corrosion is 10% w/w.CNPqHewlett-Packard Brasil LtdaCAPESPontif Catholic Univ Rio Grande Sul PUCRS, Postgrad Program Mat Engn & Technol, Ave Ipiranga 6681, BR-90619900 Porto Alegre, RS, BrazilPontif Catholic Univ Rio Grande Sul PUCRS, Sch Chem, Ave Ipiranga 6681, BR-90619900 Porto Alegre, RS, BrazilPontif Catholic Univ Rio Grande Sul PUCRS, Sch Engn, Ave Ipiranga 6681, BR-90619900 Porto Alegre, RS, BrazilUniv Fed Sao Paulo, BR-04021001 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, BR-04021001 Sao Paulo, SP, BrazilWeb of Scienc
    corecore