66 research outputs found

    Concrete-filled FRP tubes: Manufacture and testing of new forms designed for improved performance

    Get PDF
    This paper reports on the development and testing of three new concrete-filled fiber-reinforced polymer (FRP) tube (CFFT) systems. These CFFT systems were designed to enhance the effectiveness of square and rectangular FRP tubes in confining concrete. In the design of the rectangular CFFTs two different enhancement techniques were considered; namely, corner strengthening and provision of an internal FRP panel. The technique used in the development of the square CFFT system involved the incorporation of four internal concrete-filled FRP cylinders as an integral part of the CFFT. The performance of these systems was investigated experimentally through axial compression tests of 10 unique CFFTs. The results of the experimental study indicate that the new CFFT systems presented in this paper offer significantly improved performance relative to conventional CFFTs with similar material and geometric properties. Examination of the test results have led to a number of significant conclusions with respect to the confinement effectiveness of each new CFFT system. These results are presented and a discussion is provided on the parameters that influenced the compressive behavior of these CFFT systems.Togay Ozbakkalogl

    Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes

    Get PDF
    This paper presents results of an experimental study on the behavior of square and rectangular high-strength concrete (HSC)-filled fiber-reinforced polymer (FRP) tubes (HSCFFT) under concentric compression. The effects of the tube thickness, sectional aspect ratio, and corner radius on the axial compressive behavior of concrete-filled FRP tubes (CFFT) were investigated experimentally through the tests of 24 CFFTs that were manufactured using unidirectional carbon fiber sheets and high-strength concrete with 78 MPa average compressive strength. As the first experimental investigation on the axial compressive behavior of square and rectangular HSCFFTs, the results of the study reported in this paper allow a number of significant conclusions to be drawn. First and foremost, test results indicate that sufficiently confined square and rectangular HSCFFTs can exhibit highly ductile behavior. The results also indicate that confinement effectiveness of FRP tubes increases with an increase in corner radius and decreases with an increase in sectional aspect ratio. It is also observed and discussed that HSCFFTs having tubes of low confinement effectiveness may experience a significant strength loss at the point of transition on their stress-strain curves. Furthermore, it is found that the behavior of HSCFFTs at this region differ from that of normal-strength CFFTs and that it is more sensitive to the effectiveness of a confining tube. Examination of the test results have also lead to a number of important observations on the influence of the key confinement parameters on the development and distribution of the hoop strains on the tubes of CFFTs, which are presented and discussed in the paper. © 2013 American Society of Civil Engineers.Togay Ozbakkalogl
    • …
    corecore