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A THOUGHT

Scientists believe they know why earthquakes happen. They believe they
can estimate where and roughly when they will occur. There is however
nothing anyone can do to prevent them.

In November 1980, more than 3000 people died (from whom I personally
knew a few) and most of the city was destroyed as an earthquake struck Al-
Asnam (Algeria).

If nobody can prevent the occurence of earthquakes, it is my belief and
conviction that something can and must be done to minimise and ultimately
avold the catastrophical loss of human life and property that we have
witnessed so far. It is my profound wish that the present work represents a
small contribution in this respect.

This thesis is dedicated to all those who died or lost their homes and roots
following Al-Asnam Earthquake.

UNE. PENSEE

Les hommes de science croient savoir pourquoi, ou, et approximativement
quand un tremblement de terre aurait lieu. Il semble cependant qu'il n'y ait
rien a faire pour le stopper.

En novembre 1980, plus de 3000 personnes ont disparu et la majeure partie
de la ville detruite suite au tremblement de terre qui frappa Al-Asnam.

S1 personne ne peut stopper un tremblement de terre d'avoir lieu, je suis
convaincu quant a moi que les ressources humaines sont immenses et je suis
certain qu'elles peuvent, si reunies, orientées et surtout utilisees a bon
escient, contribuer a minimiser, voire eviter, les pertes catastrophiques
humaines et materielles dont nous avons été temoins a maintes reprises.

Je souhaite que cette these, que je dédis humblement aux victimes d'Al-
Asnam, represente une petite contribution dans ce sens.



SUMMARY

In this thesis the nonlinear analysis of coupled shear walls subjected to
15
earthquake forces 1is investigated and nonlinear methods of design are

suggested.

Inelastic spectrum analysis (ISA) as applied to coupled shear walls was
first investigated. Using a finite element (F.E) method of analysis, coupled
shear walls with a wide variety of geometries are investigated. The
formulation and procedure of the method has been given in detail. A design
method for coupled shear walls built in seismic areas is suggested and an
example is carried out. The method is seen to be very practical as it gives a
good approximate dimensioning of the coupled shear walls. Furthermore, it
has a great potential future as it can easily be incorporated into a design code

of practice.

A comprehensive nonlinear step-by-step dynamic analysis i1s then carried
out. A dynamic finite element computer program which takes into account
the nonlinearities that stem from the very nature of reinforced concrete, is
developed. Allowances are made for phenomena such as cracking, yielding and
crushing of concrete, yielding of steel, bond deterioration and stiffness
degradation in the coupling beams and aggregate-interlock. To test the
validity of the assumptions made concerning the material behaviour, the

analytical results are compared with experimental results and eXisting data.

It is usually a human instinct to fight back with force even in case of
defence against " Nature ". The consequent philosophy of stronger and stiffer
buildings to counter earthquake forces has been with us for quite some time,
but the experience of many catastrophical events has taught us to reconsider

our way of thinking. Energy absorbing capacity and ductility have been the



emphasis and the key for structural survival for the last few years. While it is
relatively easy to assess the available ductility or ductility supply of a
member, ductility demand however, seems to depend on so many factors that
it cannot be estimated without preliminary parametric studies. Energy
absorbing philosophy and factors which might influence ductility demand are
investigated in this study and an optimal nonlinear analysis which balances

strength and ductility is suggested.

Even though only coupled shear walls are dealt with in this investigation,
the computer program is capable of dealing with plane frame and plane frame
- shear wall systems as well. Both the walls and the coupling beams can be
either idealised as finite elements or as line elements. Nonlinearities in line
elements are confined to preset hinges at the element's ends and monitored by

a moment-rotation relationship. When using the FEM approach however,

nonlinearities are confined to Gaussian integration points (4 in this study) over

the element and monitored by the stress - strain curves of steel and concrete.
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TERMINOLOGY

Certain terms are used in this thesis and are generally defined when first used,

however it was thought useful to list them below for convenient reference.

Aseismic = Earthquake resistant.

Critical Damping = Viscous damping that will cause a displaced system

to return to its initial position without oscillation.

Damping = dissipation of energy during vibration due to internal and

external friction.

Design Earthquake = The ground motion that is taken as basis of design of

a structure.

Ductility = The ability of a member or a structure to deform beyond

its elastic limit without significant loss of strength.

Ductility Factor = Ratio of maximum deformation response to yield
deformation.
Dynamic = Varying with time.
Larthquake Input = Time history of the ground acceleration due to
motion ( Ground earthquake excitation used as input loading for response
motion) history analysis.
Elastic = Indicates a return to initial state on unloading without

residual deformation.

Energy Dissipating = Specific phenomenon by which earthquake energy input is

dissipated ( e.qg. inelastic deformations ).

Energy Dissipation = Dissipation of the energy input by an earthquake into a

structure by hysteresis, damping or other mechanisms.

VAT



First Mode = Phase relationship in which three level signals oscillate in

et

the same phase.

Flexural Strength = Ultimate bending moment that can be carried by a

section.

Frequency = Number of cycles of a periodical oscillation occuring in a

unit time.

Fundamental Mode = The mode of vibration with the largest period, i.e., the

shortest frequency.

Higher Modes = Modes of vibration except first mode.

Hinging Region = The length of a member over which yielding accurs due

to bending moment exceeding yield moment.

Hysteresis = Nonlinear force-displacement relationship of a member

under reversal of loadings. -

Inelastic = Indicates an incomplete return to initial state on

unloading and hence residual deformations.

Linear = Indicates proportionality between force and

displacement.

Lumped Mass Idealisation of the distribution of mass in which

concentrated masses are assigned to nodal points.

Nonlinear = Indicates lack of proportionality between force and

displacement.

Response History = Response analysis based on direct numerical integration

Analysis of the eqn. of motion by a step-by-step procedure.
Rigid Joint = Joint with infinite flexural rigidity.
RMS = Response value calculated as the square root of the sum

(root mean square) of the squares of the maximum modal components.



Rotational Spring = A spring at the ends of a beam element which simulates

its nonlinearities.

Second Mode Phase relationship in which only two adjacent level

signals oscillate in the same phase.

Seismic = (Caused by or subject to ground motion such as
earthquake.

Sequence of = The sequence in which yielding spreads to the various

Plastification structural members.

Spectra Based or = Response analysis based on modal response spectra.

Modal Analysis

Spectral Ace, = The maximum absolute acceleration (displacement or

(disp. or Vel.) velocity) response of a sdof system having a given‘periud.

-

Spectrum Intensity = Index defining the intensity of base motion. It is based on
the area under a velocity response spectrum in a specified

frequency range as defined by Housner [23].

Third Mode = Phase relationship in which the first and the third level

signals are in phase.

Viscous Damping = A type of damping represented by a force that resists the
motion and is proportional to velocity. It is often

expressed as a fraction of critical damping.

Yielding = A stage of response at which a section reaches its yield

moment.



NOTATIONS

CHAPTER II
C = Damping matrix of the structure.
f; = Eathquake force distribution at mode i.
Fmax = Maximum earthquake force distribution for all modes.
I = Structure importance factor used by the code.
K = Stiffness matrix of the structure.
K*  =Modal stiffness = Qj K Qi for i=j .
M = Mass matrix of the structure.
M*; = Modal mass = Pj M Qi for i=j .
¢ = Mode shape vector
S = Foundation condition factor as used by the code
5a;j = ’i'l:h modal spectral acceleration
Ti = Period at mode i

Umax = Maximum displacement distribution for all modes
Vo; = Base shear for mode i

Vomayxy = maximum base shear for all modes

W = Total weight of the structure
W; = Frequency at mode 1
y" = Ground acceleration vector
Z = Seismic zoning factor (code)
Z; = Damping ratio for mode 1
CHAPTER III
1B] = Strain-displacement matrix
[D] = Property or elasticity matrix
Det[J] = Determinant of the Jacobian matrix [J]
%e = Element displacement vector
f = Displacement function vector
[J] = Jacobian matrix
K = Global stiffness matrix of a structure
[Ke] = Element stiffness matrix
[N] = Shape function matrix
Qe = Element total potential enerqgy
R = Overall load vector

X1



Re = Nodal load vector

s, L = LLocal coordinate for isoparametric elements
U = Displacement vector in X direction
Us = Element strain enerqy
V = Displacement vector in y direction
Xy Y = Global coordinates of an element
W = Element potential energy
Wj, Wi = Weight factors at Gaussian points j and k
£ = Strain vector = [ €x €y €xy ]T
S = Principal stress direction with respect to the element axis
O = Stress vector =[ Ox Oy Oky ]T
U1,2 =Major and minor principal stresses
Tmax = Maximum shearing stress
CHAPTER IV
C = Damping ratio of a sdof system
C., = Critical damping
Dy = Maximum yield drift indice
F = Resistance
Fmax = Maximum force distribution
K = Stiffness matrix of a mdof structure
Kud = Neutral axis depth of a section
Ln = Modal participation factori
Ip = Hinging zone, i.e., zone where plasticity spreads
M = Mass matrix of a mdof system
m = Mass of a sdof system
My = Yield moment of a section
Pn = Maximum modal forces
Ry = Yield resistance force
Sa = Spectral acceleration
T = Period
uu'u" = Displacement response and derivatives

UmaX = Maximum displacement

Uy = Displacement at yield
Un = Modal displacement
W = Frequency

X" = Base acceleration

Z = Damping factor = ¢/c

C



Oymax = Maximum yield drift

Q
=
o)
X

[

4)“ = nth modal shape vector
Py = Curvature at yield
Bmax = Maximum rotation of a section or a member
Og = Plastic rotation of a section or a member
Oy = Yield rotation of a section or a member
il = Structural ductility factor
b = Rotational ductility of a beam
CHAPTER V
Cw = (Qualitative "crack width"
d, d' = Depth of tensile and compressive reinforcement respectively
Dc, Der= Elastic & cracked property matrices of concrete at
D'cr different stages
Dep = Elasto-plastic property matrix
DOB; = Incremental rotation at beam's end i
DM; = Incremental moment at beam's end i
DL = Elongation of reinforcing steel due to bond slip -
Ds = Property matrix of steel
Ec = Elastic Young's modulus of concrete
Es = Elastic Young's modulus of steel
El, = Actual rigidity of a beam element
Elg = Elastic rigidity of a beam element
F = Flexibility matrix of a beam element
Fs = Stress in reinforcement due to bond slip
f«(M) = Flexibility due to bond slip
G = Elastic shear modulus
Geg = Shear modulus after eracking has occured
My = Yield moment of a section or a member
p = Relnforcement ratio
R(M) = Rotation due to slippage of steel at applied moment M
X = Global shear reduction factor = oY + O
¢ = Shear reduction factor due to aggregate interlock
o = Shear reduction factor due to dowel action
Ea = JStrain vector of concrete
Eer = Strain when cracking first accurs

Maximum strain at which interlocking becames ineffective



Emin = Minimum strain at which concrete is assumed crushed
1l = Poisson's ratio of concrete
Oc = Stress vector in concrete
CHAPTER VI
C = Damping matrix of the structure.
DPs = Pseudo-load vector
Dv, DV'
Dv¥ = Incremental nodal displacement and derivatives
Dy"(t) = Incremental ground acceleration
Dt = Time step
K = Stiffness matrix of a mdof structure
K* = Dynamic stiffness matrix
M = Mass matrix of a mdof system
Me = Element mass matrix
Mext = External mass matrix
R = Qverall load vector
W = Frequency of the structure at mode n
Z = Damping factor for mode n
B = Newmark's constant indicating the variation of acceleration

in a time interval

> = Convergence tolerance

CHAPTER VII & VIII

Omax = Maximum rotation of a section or a member

Gp = Plastic rotation of a section or a member
By = Yield rotation of a section or a member
1l = Ductility demand

Hp = Rotational ductility

dM = Moment increment

Es = Young's modulus of steel

f'o = Compressive strength of concrete

fy = Yield stress of steel

L.b = LLength of the coupling beams

My = Yield moment of a section

MyYmin = Minimum yield miment capacity ( as stipulated by code )



CHAPTER ONE

INTRODUCTION

1.1 General

The use of reinforced concrete as a structural building material has
become more and more a standard feature of modern construction. This was
possible mainly as a consequence of extensive experimental and analytical
investigations on reinforced concrete models. The results of these
Investigations allowed a set of design quidelines and rules that survived the
test of time successfully for quasi-static loading conditions. However
experience has shown that these rules were not suitable when it came to

dynamic loading conditions such as earthquakes.

Few of the buildings constructed in seismic areas are designed on the
basis of the results of dynamic analysis. The code of practice allows for
earthquake loads to be approximated by so called equivalent static loads.
The magnitude of the Ilatter depends on the seismic zone and the
fundamental period of the structure in hand. An approximate formula is
suggested for estimating the fundamental period. Furthermore, the code
load requirements are very small compared with those experienced during a
significant earthquake. As a result of these limitations, enormous property
damage and loss of human life have been caused by destructive earthquakes
during the last decades. The primary objective of a structural engineer
should therefore be to design any structure rationally in such a way that it
will resist moderate earthquakes without damage and not collapse and cause

loss of lives , even in the case of severe ground motion. To achieve this,



the need to conduct a more comprehensive earthquake analysis and a better

understanding of the behaviour of structures seems to be more than

necessary.

Since the very rapid increase of high'rise buildings all over the world,
reinforced concrete wall systems have for many years been a very common
means of resisting lateral forces due to wind and earthquake. Usually the

so-called shear walls are built over the whole height of the building and are

laid out either as a series of walls connected by beams and/or slabs, or as a
central core structure with openings to accomodate doors, windows or

corridors. A good approximation of the interaction between shear walls and
connecting beams, as well as their proportioning and design under severe
ground motions, would be a great help towards improving the behaviour and

avoiding "the unexpected" in the case of a major eathquake.

1.2 General Review

It was Rosman [ 1 ] who, in 1964 , broke the tradition of treating coupled
shear walls as deep columns acting as separate cantilever beams. He
proposed a solution in which the coupling system is replaced by a continuous
medium ( laminae ) of equivalent stiffness. Later Coull and Choy dhury [ 2
& 3 ] and Coull and Irwin [ 4 ] extended the laminae method. They took into
account shear deformation effects and presented very convenient graphical
charts to determine the stresses and deflections of coupled shear walls of
different geometric characteristics and subjected to various lateral static
load cases. Tso and Chan[ 5 ] and Coull et al. [ 6 & 7 ] used the method to
determine approximate natural frequencies of coupled shear walls which can

be used with the response spectrum approach.

Although these methods were a good improvement with respect to the

unduly conservative approach by which no credit was given to the coupling



effect, they are still limited by various simplifications on loading and boundary
conditions and fail to produce accurate results and details on the distribution
of stresses over the entire structure if need be. The emergence of finite
element method (FEM) [ 8 ] as applied to elastic continuum and the growing
popularity of computer facilities bridged the gap. Indeed the FEM has been
used succefully for static as well as dynamic problems [ 9 J. Some of the
advantages of FEM in solving shear wall problems are its ability to treat:

a) variation in thickness of the shear walls

b) irregularities of loading

c) irreqularities in the geometry of the openings

d) variation in material properties.

The observed nonlinear behaviour of reinforced concrete structures also
had to be simulated analytically. Shear walls were first idealised as deep
columns based on the modified " EI " procedure. Nonlinearities in frames and
walls were generally monitored by the nonlinear force -displacement
relationship of preset hinges generally located at the element's ends [ 10 J.
The first basic moment - rotation relationship used to monitor nonlinear
behaviour was the bilinear elastic perfectly plastic idealisation. Shepherd et
al. [ 11 ] used the latter for nonlinear dynamic analysis and reported a good

correlation between analytical and experimental predictions.

The need for an inelastic approach to earthquake response problems
simple enough to be introduced into a code of practice and capable of taking
nonlinearities into account gave rise to many investigations from which the
ductility factor method [ 12 ] and the inelastic spectrum approach [ 14 - 16 ]
emerged. The difference between the inelastic spectrum and the usual elastic
modal analysis is that the former uses an inelastic spectra, that is derived
from a nonlinear force - deformation relationship of a single degree of

freedom ( sdof ) system, instead of the usual elastic spectra.



Shibata and Sozen [ 17 ] developed a design methad for reinforced

concrete frames in which a softer and more damped " substitute structure " is

L

analysed by elastic modal analysis. This general category of methods which
uses an elastic spectra as the loading has been applied by many investigators [
18 -20] to sdof systems. Gerra & Esteva [ 13 ] used the same procedure but
accounted for the inelastic behaviour by using a frequency shift and an

Increased value of damping.

Newmark & Hall [ 14 ] proposed a method in which elastic modal analysis
was used along with a reduced design spectra. The reduction in the elastic
design spectra was derived from observed sdof inelastic spectra for various
damping and frequency combinations. Lai & Biggs [ 16 ] assessed the method
and applied i1t to Inelastic response of plane frame for 2 % and 5 % damping
respectively. They concluded that the method was unconservative for 2%
damping and conservative for 5% damping but led to satisfactory design.
Anagnotopoulos et al. [ 15 ] also used the method to examine the response of a
multistorey building and concluded that the approach could be unconservative.
He believed this was due to the variations in the input motions which can

never match a smooth spectra exactly.

As far as nonlinear dynamic history response behaviour of structures
subjected to ground motions is concerned several inelastic models were used
extensively. They range from one component model [ 21 ] in which each
member is represented by an elastic beam element with inelastic springs
(hinges) at its two ends, to multicomponent mode! [ 22 & 23 ], in which the
idealised beam has an elastic member and several elasto - plastic members in
parallel. Otani [ 24 ] modelled a beam element as two cantilever beams whose
free ends coincide with the inflection point. He assumed the inflection point
of a deformed member was at the middle and the member deformed in

antisymmetric bending. This model was believed to match better the



hysteresis data based on test results. This was particularly true when the
effects of vertical loads were negligeable or nonexistent. Based on the same
general principle and in order to obtain a better prediction and accuracy, some
researchers [ 25 to 27 ] attempted either a finer idealisation by subdividing a
beam element into yet more beam elements or by introducing more rotational
springs in the regions where non linearities are likely to occur. Fibre or
layering model was also introduced [ 28 J. Each section was subdivided into
many layers and the moment-curvature relationship was derived from steel
and concrete constitutive laws. Member stiffness was then determined by
integrating along the member length. This model, though leading to a better

insight, was very time consuming and tedious and hence unpopular.

Takeda et al. [ 29 ] developed their very popular hysteretic model which
was modified to take stiffness degradation and strain hardening into account
by Kannan & Powell [ 30 ], Because it was based on several experimental
studies, this model was found to be successful in simulating both static and
dynamic behaviour of reinforced concrete joints of cantilever beams. Later
Takeda's model coupled with the assumptions made by Otani [ 24 ] concerning
the inflection point and the antisymmetric bending deformation shape, has
been used extensively by many investigators to simulate nonlinear response of
frame structures (i.e., assembly of beam elements) subjected to earthquake

forces.

Ngo and Scordelis [ 31 ] followed by Nilson [ 32 ] were the first to
demonstrate the cabability of the finite element method of analysis to cope
with reinforc;ed‘concrete nonlinearities. They analysed simple beams as two -
dimensional systems with predefined crack pattern and introduced the concept
of link element in order to model the bond between concrete and steel.

However their approach fell short because of the Iinconvenience and

impracticality of their redefinition of the structure topology after cracking



had occured. Finite element method as applied to plane stress problems has
been applied successfully to nonlinear analysis of reinforced concrete by
Suidan & Schnobrich [ 33 ], Agrawal et al. [ 34 § and Schnobrich [ 35 . Such
two dimensional analysis has been satisfactory for the response of isolated

walls subjected mainly to monotonically increased loads.

Darwin and Pecknold [ 36 ], using the concept of equivalent uniaxial
strain, analysed reinforced concrete shear panels under cyclic loading and
reported a good correlation with experimental results. Rashid [ 37 ] was the
first to introduce the most popular approach by which cracked concrete was
treated as an orthotropic material. In his representation, the elastic
modulus of concrete in the direction normal to the crack was reduced to
zero, giving rise to a cracked element rather than a sharp crack and
avoiding in this way the need for updating the topology of the structure
after cracking had occured. This approach has been used successfully by
many investigators [ 40-41 & 33 ). Cevenka and Gerslte [ 38-39 ]
investigated panels under cyclic loading assuming an elastic-perfectly
plastic behaviour for concrete in compression. Recently Agrawal et al. [ 42
] claimed to present the first successful application of the plane stress finite
element method in determining the nonlinear behaviour of an Iisolated
reinforced concrete wall subjected to simulated earthquake motions. They
used a biaxial constitutive law and orthotropic material properties for

cracked elements.

In most of these applications coupled shear walls have been idealised
either by the " equivalent EI " procedure or by a two - dimensionnal plane
stress approach for both wall and beam members. In view of the energy
absorbing philosophy, that is strong wall - weak beam, necessary for the
design of concrete structures in seismic areas there is a need for a more

realistic model of coupled shear walls. This can be achieved by idealising



the walls as plane stress elements and the coupling beams, much slender, as

line elements.

It is well accepted that during earthquake excitation, part of the energy
released [ 43 ] is absorbed by the structure elastically, the other part is
either absorbed by purposedly designed damping devices or through
structural damage beyond repair or even complete collapse. As far as
coupled shear walls are concerned it is generally accepted that energy
dissipation by hysteretic damping is the most viable. Paulay has
investigated ways by which available ductility in a member, that is energy
absorbing capacity without loss of strength, could be improved. He
suggested diagonal reinforcement for deep beams where shear is
predominant [44-45] and squat shear walls [ 46 1. Allen et al. [ 47 ] tested
the behaviour and investigated the design of ductile walls. They found that
concentrating tension steel at each end of the wall, as recommended by
most aseismic codes [ 48-51 ], improved its ductile behaviour. They
concluded that available ductility remains almost constant with changes in
main tension steel areas and generally decreases with increasing axial load.
The use of barbell cross section walls has also been recommended by some
investigators and most codes of practice. A good review of the state - of -

art of seismic resistant design of shear walls is given by Bertero [ 52 ].

Due to the instability problems that the yielding of the walls might
cause, their use as the first line of defence against earthquakes has been
discouraged in favour of ductile girders and coupling beams. To ensure this
happens the coupling beams are intentionally made moderately 'strong to
allow them to yield ahead of the walls. Coull and Choo [ 53 ] proposed an
approximate inelastic method based on the continuum approach. They
divided the structure into elastic and plastic zones and determined the

positions of these zones by making assumptions and simplifications on the



form of shear distribution in the coupling beams as the load increases.
Fintel and Ghosh [ 54 ] investigated the nonlinear dynamic response of a 31
storey coupled shear wall - frame system. Keeping columns and walls
elastic, they attempted to balance the ductility enforced upon the beams, or
ductility demand, and their availat;le ductility or ductility supply. They used
a trial and error process and repetitive nonlinear dynamic history analysis.
Later Fintel and Ghosh [ 55 ] used the same technique, this time however
they allowed the columns and the walls to yield ahead of the beams. They
concluded that the walls, if ductile, can dissipate the majority of the energy
input through inelastic deformations. Deretcho et al. [ 56 ] studied the
effect of axial force -flexural interaction on the nonlinear response of
coupled shear walls and concluded that substantial axial force in the walls

may affect available ductility in individual members.

1.3 Objective and Scope

In case of severe earthquakes, structures will deform well beyond their
elastic range. Some elements will be more overstressed than others giving
rise to successive adjustments of load distribution and hence to a different

behaviour than one might expect if no specific nonlinear analysis had been

made to permit such prediction. When designing a structure one may wish
to counter most of the energy demand upon the structure through inelastic
deformations confined to desired members, or through a predetermined
sequence of degradation or plastification. Therefore the need to perform a

comprehensive nonlinear dynamic analysis appears to be desirable.

Although reinforced concrete is very complex to model, the emergence of
computer facilities has made nonlinear dynamic analysis possible by allowing

for phenomena such as cracking, yielding, bond deterioration, stiffness

degradation and aggregate - interlock. Our first objective will therefore be to



develop a dynamic finite element computer program to take into account the
nonlinearities that stem from the very nature of reinforced concrete. To test
the validity of the assumptions made concerning material behaviour, the

\

analytical results are compared with existing experimental tests and data.

Confining inelastic deformations to certain members of the structure
requires nonlinear analysis to be performed repetitively and proportioning and
design changed consequently until desired behaviour is achieved. This is a time
consuming and tedious process, therefore an alternative needs to be found
which yields, either a good appraximate dimensioning of the coupled shear wall
structures in the case where the computer facilities are not available, or an
advantageous starting point if nonlinear dynamic analysis can be performed.
The development of inelastic spectrum approach ( ISA ) as applied to coupled
shear walls seems to be appropriate and is the subject of the second objective

of this research.

It is usually a human instinct to fight back with force even in case of
defence against " Nature ". The consequent philosophy of stronger and stiffer
buildings to counter earthquake forces has been with us for quite some time,
but the experience of many catastrophical events has taught us to reconsider
our way of thinking. Energy absorbing capacity and ductility have been the
emphasis and the key for structural survival for the last few years. While it is
relatively easy to assess the available ductility or ductility supply of a
member, ductility demand however, seems to depend on so many factors that
it cannot be estimated without preliminary parametric studies. Energy
absorbing philosophy and factors which might influence ductility demand

constitute the final objective of this study.

Even though only coupled shear walls are dealt with in this investigation,
the computer program is capable of dealing with plane frame and plane frame

- shear wall systems as well. Both the walls and the coupling beams can be



either idealised as finite elements or as line elements. Nonlinearities in line
elements are confined to preset hinges at the elerﬁent‘s ends and monitored by
a moment-rotation relationship. When usinb the FEM approach however,
nonlinearities are confined to Gaussian integration points (4 in this study) over
the element and monitored by the stress - strain curves of steel and concrete.
The computer program is an extention of the program developed by Wee [ 57 ]
for elastic dynamic analysis and is also capable of dealing with statically
applied loads in the elastic range. The step-by-step procedure can be
applicable to any dynamic force in addition to earthquake excitations for both

elastic and inelastic systems.

1-4 Qutline of the Thesis

Many approaches are currently available for the aseismic design of

reinforced concrete structures. Similarities and limitations of these
approaches are the subject of Chapter II of this thesis. Chapter Il is dedicated

to the description of the theory of finite element method.

As previously stated the first objective of this study is dedicated to the
inelastic spectrum approach (ISA) as applied to coupled shear wall structures,
and is covered in chapter IV. In this chapter the free vibration analysis of a
wide variety of coupled shear walls with a range of geometries is carried out.
The natural frequencies are computed for different typical floor weights and
related to the corresponding stiffnesses. Then an inelastic design spectra is
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