6,001 research outputs found

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Third-order optical autocorrelator for time-domain operation at telecommunication wavelengths

    Get PDF
    We report on amorphous organic thin films that exhibit efficient third-harmonic generation at telecommunication wavelengths. At 1550 nm, micrometer-thick samples generate up to 17 µW of green light with input power of 250 mW delivered by an optical parametric oscillator. This high conversion efficiency is achieved without phase matching or cascading of quadratic nonlinear effects. With these films, we demonstrate a low-cost, sensitive third-order autocorrelator that can be used in the time-frequency domain

    Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study

    Full text link
    We study the two-dimensional XY model with quenched random phases by Monte Carlo simulation and finite-size scaling analysis. We determine the phase diagram of the model and study its critical behavior as a function of disorder and temperature. If the strength of the randomness is less than a critical value, σc\sigma_{c}, the system has a Kosterlitz-Thouless (KT) phase transition from the paramagnetic phase to a state with quasi-long-range order. Our data suggest that the latter exists down to T=0 in contradiction with theories that predict the appearance of a low-temperature reentrant phase. At the critical disorder TKT0T_{KT}\rightarrow 0 and for σ>σc\sigma > \sigma_{c} there is no quasi-ordered phase. At zero temperature there is a phase transition between two different glassy states at σc\sigma_{c}. The functional dependence of the correlation length on σ\sigma suggests that this transition corresponds to the disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure

    Ultrafast-pulse diagnostic using third-order frequency-resolved optical gating in organic films

    Get PDF
    We report on the diagnostic of ultrafast pulses by frequency-resolved optical gating (FROG) based on strong third-harmonic generation (THG) in amorphous organic thin films. The high THG conversion efficiency of these films allows for the characterization of sub-nanojoule short pulses emitting at telecommunication wavelengths using a low cost portable fiber spectrometer

    Effect of in-plane line defects on field-tuned superconductor-insulator transition behavior in homogeneous thin film

    Full text link
    Field-tuned superconductor-insulator transition (FSIT) behavior in 2D isotropic and homogeneous thin films is usually accompanied by a nonvanishing critical resistance at low TT. It is shown that, in a 2D film including line defects paralle to each other but with random positions perpendicular to them, the (apparent) critical resistance in low TT limit vanishes, as in the 1D quantum superconducting (SC) transition, under a current parallel to the line defects. This 1D-like critical resistive behavior is more clearly seen in systems with weaker point disorder and may be useful in clarifying whether the true origin of FSIT behavior in the parent superconductor is the glass fluctuation or the quantum SC fluctuation. As a by-product of the present calculation, it is also pointed out that, in 2D films with line-like defects with a long but {\it finite} correlation length parallel to the lines, a quantum metallic behavior intervening the insulating and SC ones appears in the resistivity curves.Comment: 16 pages, 14 figure

    The Field-Tuned Superconductor-Insulator Transition with and without Current Bias

    Full text link
    The magnetic-field-tuned superconductor-insulator transition has been studied in ultrathin Beryllium films quench-condensed near 20 K. In the zero-current limit, a finite-size scaling analysis yields the scaling exponent product vz = 1.35 +/- 0.10 and a critical sheet resistance R_{c} of about 1.2R_{Q}, with R_{Q} = h/4e^{2}. However, in the presence of dc bias currents that are smaller than the zero-field critical currents, vz becomes 0.75 +/- 0.10. This new set of exponents suggests that the field-tuned transitions with and without dc bias currents belong to different universality classes.Comment: RevTex 4 pages, 4 figures, and 1 table minor change

    Thickness-Magnetic Field Phase Diagram at the Superconductor-Insulator Transition in 2D

    Full text link
    The superconductor-insulator transition in ultrathin films of amorphous Bi was tuned by changing the film thickness, with and without an applied magnetic field. The first experimentally obtained phase diagram is mapped as a function of thickness and magnetic field in the T=0 limit. A finite size scaling analysis has been carried out to determine the critical exponent product vz, which was found to be 1.2 for the zero field transition, and 1.4 for the finite field transition. Both results are different from the exponents found for the magnetic field tuned transition in the same system, 0.7.Comment: 4 pages, 4 figure

    Speedy Transactions in Multicore In-Memory Databases

    Get PDF
    Silo is a new in-memory database that achieves excellent performance and scalability on modern multicore machines. Silo was designed from the ground up to use system memory and caches efficiently. For instance, it avoids all centralized contention points, including that of centralized transaction ID assignment. Silo's key contribution is a commit protocol based on optimistic concurrency control that provides serializability while avoiding all shared-memory writes for records that were only read. Though this might seem to complicate the enforcement of a serial order, correct logging and recovery is provided by linking periodically-updated epochs with the commit protocol. Silo provides the same guarantees as any serializable database without unnecessary scalability bottlenecks or much additional latency. Silo achieves almost 700,000 transactions per second on a standard TPC-C workload mix on a 32-core machine, as well as near-linear scalability. Considered per core, this is several times higher than previously reported results.Engineering and Applied Science
    corecore