5,052 research outputs found

    The Distance to the Vela Supernova Remnant

    Get PDF
    We have obtained high resolution Ca II and Na I absorption line spectra toward 68 OB stars in the direction of the Vela Supernova Remnant. The stars lie at distances of 190 -- 2800 pc as determined by Hipparcos and spectroscopic parallax estimations. The presence of high velocity absorption attributable to the remnant along some of the sight lines constrains the remnant distance to 250+/-30 pc. This distance is consistent with several recent investigations that suggest that the canonical remnant distance of 500 pc is too large.Comment: To be published in The Astrophysical Journal Letters Figure 1 y-axis labels correcte

    Superfluid-insulator transition of the Josephson junction array model with commensurate frustration

    Full text link
    We have studied the rationally frustrated Josephson-junction array model in the square lattice through Monte Carlo simulations of (2+1)(2+1)D XY-model. For frustration f=1/4f=1/4, the model at zero temperature shows a continuous superfluid-insulator transition. From the measurement of the correlation function and the superfluid stiffness, we obtain the dynamical critical exponent z=1.0z=1.0 and the correlation length critical exponent ν=0.4±0.05\nu=0.4 \pm 0.05. While the dynamical critical exponent is the same as that for cases f=0f=0, 1/2, and 1/3, the correlation length critical exponent is surprisingly quite different. When f=1/5f=1/5, we have the nature of a first-order transition.Comment: RevTex 4, to appear in PR

    Interstellar absorptions and shocked clouds towards supernova remnant RX J0852.0-4622

    Full text link
    We present results of survey of interstellar absorptions towards supernova remnant (SNR) RX J0852.0-4622. The distribution of KI absorbers along the distance of the background stars is indicative of a local region (d<600pc) strongly depopulated by KI line-absorbing clouds. This fact is supported by the behavior of the interstellar extinction. We find four high-velocity CaII components with velocities of >100km/s towards three stars and identify them with shocked clouds of Vela SNR. We reveal and measure acceleration of two shocked clouds at the approaching and receding sides of Vela SNR along the same sight line. The clouds acceleration, velocity, and CaII column density are used to probe cloud parameters. The total hydrogen column density of both accelerating clouds is found to be similar (~6*10^{17} cm2^{-2}) which indicates that possibly there is a significant amount of small-size clouds in the vicinity of Vela SNR.Comment: accepted in MNRA

    Effect of in-plane line defects on field-tuned superconductor-insulator transition behavior in homogeneous thin film

    Full text link
    Field-tuned superconductor-insulator transition (FSIT) behavior in 2D isotropic and homogeneous thin films is usually accompanied by a nonvanishing critical resistance at low TT. It is shown that, in a 2D film including line defects paralle to each other but with random positions perpendicular to them, the (apparent) critical resistance in low TT limit vanishes, as in the 1D quantum superconducting (SC) transition, under a current parallel to the line defects. This 1D-like critical resistive behavior is more clearly seen in systems with weaker point disorder and may be useful in clarifying whether the true origin of FSIT behavior in the parent superconductor is the glass fluctuation or the quantum SC fluctuation. As a by-product of the present calculation, it is also pointed out that, in 2D films with line-like defects with a long but {\it finite} correlation length parallel to the lines, a quantum metallic behavior intervening the insulating and SC ones appears in the resistivity curves.Comment: 16 pages, 14 figure

    The Field-Tuned Superconductor-Insulator Transition with and without Current Bias

    Full text link
    The magnetic-field-tuned superconductor-insulator transition has been studied in ultrathin Beryllium films quench-condensed near 20 K. In the zero-current limit, a finite-size scaling analysis yields the scaling exponent product vz = 1.35 +/- 0.10 and a critical sheet resistance R_{c} of about 1.2R_{Q}, with R_{Q} = h/4e^{2}. However, in the presence of dc bias currents that are smaller than the zero-field critical currents, vz becomes 0.75 +/- 0.10. This new set of exponents suggests that the field-tuned transitions with and without dc bias currents belong to different universality classes.Comment: RevTex 4 pages, 4 figures, and 1 table minor change

    Fabrication of Robust Thermal Transition Modules and First Cryogenic Experiment with the Refurbished COLDDIAG

    Get PDF
    Two sets of thermal transition modules as a key component for the COLDDIAG (cold vacuum chamber for beam heat load diagnostics) refurbishment were manufactured, based on the previous design study. The modules are installed in the existing COLDDIAG cryostat and tested with an operating temperature of approximately 50 K at both a cold bore and a thermal shield. This cool-down experiment is a preliminary investigation aiming at beam heat-load studies at the FCC-hh where the beam screens will be operated at almost the same temperature. In this contribution, we report the fabrication processes of the mechanically robust transition modules and the first thermal measurement results with the refurbished COLDDIAG in a cryogenic environment. The static heat load in the refurbished cryostat remains unchanged, compared to that in the former one (4-K cold bore and 50-K shield with thin transitions), despite the increase in the transition thickness. It originates from the identical temperature at the cold bore and the shield, which can theoretically allow the heat intakes by thermal conduction and radiation between them to vanish

    Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study

    Full text link
    We study the two-dimensional XY model with quenched random phases by Monte Carlo simulation and finite-size scaling analysis. We determine the phase diagram of the model and study its critical behavior as a function of disorder and temperature. If the strength of the randomness is less than a critical value, σc\sigma_{c}, the system has a Kosterlitz-Thouless (KT) phase transition from the paramagnetic phase to a state with quasi-long-range order. Our data suggest that the latter exists down to T=0 in contradiction with theories that predict the appearance of a low-temperature reentrant phase. At the critical disorder TKT0T_{KT}\rightarrow 0 and for σ>σc\sigma > \sigma_{c} there is no quasi-ordered phase. At zero temperature there is a phase transition between two different glassy states at σc\sigma_{c}. The functional dependence of the correlation length on σ\sigma suggests that this transition corresponds to the disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure

    Phase diagram of a Disordered Boson Hubbard Model in Two Dimensions

    Full text link
    We study the zero-temperature phase transition of a two-dimensional disordered boson Hubbard model. The phase diagram of this model is constructed in terms of the disorder strength and the chemical potential. Via quantum Monte Carlo simulations, we find a multicritical line separating the weak-disorder regime, where a random potential is irrelevant, from the strong-disorder regime. In the weak-disorder regime, the Mott-insulator-to-superfluid transition occurs, while, in the strong-disorder regime, the Bose-glass-to-superfluid transition occurs. On the multicritical line, the insulator-to-superfluid transition has the dynamical critical exponent z=1.35±0.05z=1.35 \pm 0.05 and the correlation length critical exponent ν=0.67±0.03\nu=0.67 \pm 0.03, that are different from the values for the transitions off the line. We suggest that the proliferation of the particle-hole pairs screens out the weak disorder effects.Comment: 4 pages, 4 figures, to be published in PR

    Moving Wigner Glasses and Smectics: Dynamics of Disordered Wigner Crystals

    Full text link
    We examine the dynamics of driven classical Wigner solids interacting with quenched disorder from charged impurities. For strong disorder, the initial motion is plastic -- in the form of crossing winding channels. For increasing drive, the disordered Wigner glass can reorder to a moving Wigner smectic -- with the electrons moving in non-crossing 1D channels. These different dynamic phases can be related to the conduction noise and I(V) curves. For strong disorder, we show criticality in the voltage onset just above depinning. We also obtain the dynamic phase diagram for driven Wigner solids and prove that there is a finite threshold for transverse sliding, recently found experimentally.Comment: 4 pages, 4 postscript figure

    Synthesis, Characterisation and 3D Printing of an Isosorbide Based, Light Curable, Degradable Polymer for Potential Application in Maxillofacial Reconstruction

    Get PDF
    Although emergence of bone tissue engineering techniques has revolutionised the field of maxillofacial reconstruction, the successful translation of such products, especially concerning larger sized defects, still remains a significant challenge. Light curable methacrylate based polymers have ideal properties for bone repair. These materials are also suitable for 3D printing which can be applicable for restoration of both function and aesthetics. The main objective of this research was to synthesise a mechanically stable and biologically functional polymer for reconstruction of complex craniofacial defects. The experimental work initially involved synthesis of (((3R,3aR,6S,6aR)-hexahydrofuro[3,2-b]furan-3,6-diyl)bis(oxy))bis(ethane-2,1-diyl) bis((4-methyl-3-oxopent-4-en-1-yl)carbamate), CSMA-1, and ((((((((((((3R,3aR,6S,6aR)-hexahydrofuro[3,2-b]furan-3,6-diyl)bis(oxy))bis(ethane-2,1 diyl))bis(oxy))bis(carbonyl))bis(azanediyl))bis(methylene))bis(3,3,5-trimethylcyclohexane-5,1-diyl))bis(azanediyl))bis(carbonyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate), CSMA-2; Nuclear Magnetic Resonance (NMR) analysis confirmed formation of the monomers and composite samples were fabricated respectively by exposing 11 mm diameter discs to blue light. Modulus of the tensile elasticity was tested using a biaxial flexural test and the values were found to be between 1 and 3 GPa in CMA-1, CSMA-2 and their composites. In vitro cell culture, using human Bone Marrow Derived Mesenchymal Stem Cells (BMSCs), confirmed non-toxicity of the samples and finally 3D printing allowed direct extrusion and setting of the bio ink into a mesh-like construct
    corecore