9 research outputs found

    Graphene Oxide-Poly(dimethylsiloxane)-Based Lab-on-a-Chip Platform for Heavy-Metals Preconcentration and Electrochemical Detection

    Get PDF
    Herein, we present the application of a novel graphene oxide-poly(dimethylsiloxane) (GO-PDMS) composite in reversible adsorption/desorption, including detection of heavy metals. GO-PDMS was fabricated by simple blending of GO with silicon monomer in the presence of tetrahydrofuran, followed by polymerization initiated upon the addition of curing agent. We found GO concentration, curing agent concentration, pH, and contact time among the most important factors affecting the adsorption of Pb(II) used as a model heavy metal. The mechanism of adsorption is based on surface complexation, where oxygen active groups of negative charge can bind with bivalent metal ions Me(II). To demonstrate a practical application of this material, we fabricated microfluidic lab-on-a-chip platform for heavy-metals preconcentration and detection. This device consists of a screen-printed carbon electrode, a PDMS chip, and a GO-PDMS chip. The use of GO-PDMS preconcentration platform significantly improves the sensitivity of electrochemical detection of heavy metals (an increase of current up to 30× was observed), without the need of modifying electrodes or special reagents addition. Therefore, samples being so far below the limit of detection (0.5 ppb) were successfully detected. This approach is compatible also with real samples (seawater) as ionic strength was found as indifferent for the adsorption process. To the best of our knowledge, GO-PDMS was used for the first time in sensing application. Moreover, due to mechanical resistance and outstanding durability, it can be used multiple times unlike other GO-based platforms for heavy-metals adsorption

    Rapid on-chip apoptosis assay on human carcinoma cells based on annexin-V/quantum dot probes

    Get PDF
    Despite all the efforts made over years to study the cancer expression and the metastasis event, there is not a clear understanding of its origins and effective treatment. Therefore, more specialized and rapid techniques are required for studying cell behaviour under different drug-based treatments. Here we present a quantum dot signalling-based cell assay carried out in a segmental microfluidic device that allows studying the effect of anti-cancer drugs in cultured cell lines by monitoring phosphatidylserine translocation that occurs in early apoptosis. The developed platform combines the automatic generation of a drug gradient concentration, allowing exposure of cancer cells to different doses, and the immunolabeling of the apoptotic cells using quantum dot reporters. Thereby a complete cell-based assay for efficient drug screening is performed showing a clear correlation between drug dose and amount of cells undergoing apoptosis

    Development of novel electrochemical and optical Lab-on-a-chip platforms for contaminants and biomarkers sensing

    Get PDF
    La detección de contaminantes peligrosos requiere especial atención debido a su posible toxicidad, baja concentración en muestras reales y, en la mayoría de los casos, una imposibilidad de llevar a cabo la detección a través de un metodo tan específico como el inmunoensayo. Una de las estrategias orientadas a la fácil detección de compuestos nocivos es el uso de plataformas microfluídicas llamadas Lab-on-a-chip. En el Capítulo 3, una innovadora plataforma microfluídica en miniatura es desarrollada para la detección simultánea y extracción de polibromodifenil éteres (PBDEs). La plataforma consiste en un chip microfluídico de polidimetilosiloxano (PDMS) para el paso de la inmunoreacción, un chip de PDMS con un electrodo serigrafiado de carbono (SPCE) integrado para la detección, y un chip de PDMS-óxido de grafeno reducido (rGO) para la adsorción física y posterior eliminación de residuos de PBDE. La detección se basó en un inmunoensayo competitivo entre PBDE y PBDE modificado con Peroxidasa de Rábano Silvestre (HRP-PBDE) seguido de un monitoreo de oxidación enzimática de o-aminofenol (o-AP), utilizando voltamperometría de onda cuadrada y resolución anódica (SW-ASV). PBDE fue detectado con una buena sensibilidad y un límite de detección similar al obtenido a través de una prueba colorimétrica comercial (0.018 ppb), pero con la ventaja de utilizar volúmenes reactivos más bajos y un tiempo de análisis reducido. Con el objetivo de diseñar un sistema de detección apropiado para compuestos tóxicos como PBDEs, un compósito de óxido de grafeno reducido y PDMS ha sido desarrollado y optimizado para obtener mayor adsorción (basados en hidropobicidad e interacción π–π entre moléculas de rGO y PBDE) comparado con los PDMS sin modificación. Este sistema se puede aplicar perfectamente para detectar cualquier análito utilizando el inmunoensayo apropiado y facilitar el funcionamiento en matrices tan complejas como el agua marina. En el Capítulo 4 se desarrolla un dispositivo LOC para la preconcentración y la detección simultánea de metales pesados. Dicho dispositivo consta de un electrodo serigrafiado de carbono, un chip de PDMS y otro de GO-PDMS. El chip de GO-PDMS fue fabricado y los factores más esenciales fueron optimizados, incluidos la concentración de GO y aquella del curador de PDMS. Se descubrió que la habilidad de adsorción es inversamente proporcional a la concentración de curador de PDMS en el compósito y proporcional a la concentración de GO. El mecanismo de adsorción está basado en una reacción de complejación , donde grupos activos de oxígeno con cargas negativas se pueden enlazar con metales bivalentes como el Pb. La adsorción más alta fue obtenida en pH=7. El GO-PDMS tiene una capacidad relativamente grande de adsorción, ya que incluso las muestras que contienen niveles más altas que 500 ppb (mayores a 500 ppb) son totalmente adsorbidas, teniendo en cuenta que tal concentración es muy alta. El proceso de desorción ha sido también optimizado. Gracias a ello, metales que habían sido previamente adsorbidos se pueden liberar y detectar en voltamperometría de Onda Cuadrada y Resolución Anódica. El límite de detección de esta técnica (utilizando electrodos serigrafiados de carbono) fue de 0.5 ppb para el plomo (Pb). Esto significa que utilizando una plataforma de preconcentración GO-PDMS, se pueden cuantificar cantidades más bajas de Pb, ya que las muestras preconcentradas mostraron una corriente de hasta 30 veces más alta que las no preconcentradas. Esta plataforma se puede utilizar para la detección mejorada de metales pesados y también para su eliminación.The detection of hazardous contaminants requires special attention due to their possible toxicity, low concentration in real samples and, in most cases, an impossibility to perform detection by using such a specific approach as immunoassay. One of the approaches taking an important step towards easier detection of hazardous compounds is the use of Lab-on-a-chip platform. In Chapter 3, a novel, miniaturized microfluidic platform for the simultaneous detection and removal of polybrominated diphenyl ethers (PBDEs) was developed. The platform consists of a polydimethylsiloxane (PDMS) microfluidic chip for the immunoreaction step, a PDMS chip with an integrated screen-printed electrode (SPCE) for detection, and a PDMS-reduced graphene oxide (rGO) chip for physical adsorption and subsequent removal of PBDE residues. The detection was based on competitive immunoassay-linked binding between PBDE and PBDE modified with horseradish peroxidase (HRP-PBDE) followed by the monitoring of enzymatic oxidation of o-aminophenol (o-AP) by using square wave anodic stripping voltammetry (SW-ASV). PBDE was detected with good sensitivity and a limit of detection similar to that obtained with a commercial colorimetric test (0.018 ppb), but with the advantage of using lower reagent volumes and a reduced analysis time. In order to design a detection system suitable for toxic compounds such as PBDEs, a reduced graphene oxide–PDMS composite has been developed and optimized to obtain increased adsorption (based on both the hydrophobicity and π–π stacking between rGO and PBDE molecules) compared to those of non-modified PDMS. This system can be easily applied to detect any analyte by using the appropriate immunoassay and it supports operation in such complex matrices as seawater. In Chapter 4, a LOC device for the simultaneous preconcentration and detection of heavy metals was developed. This device consists of a screen-printed carbon electrode, a PDMS chip, and a GO-PDMS chip. The GO-PDMS chip was fabricated and the most crucial factors were optimized, including the concentration of GO and the concentration of the curing agent. It was found that the adsorption ability is inversely proportional to the PDMS catalyser (curing agent) concentration in the composite and proportional to the GO concentration. The mechanism of adsorption is based on surface complexation, where oxygen active groups of negative charge can bind with such bivalent metals as Pb. The highest adsorption was obtained in pH=7. The GO-PDMS has a relatively big large adsorption capacity, as even the samples >500 ppb are nearly fully adsorbed, taking into account that such a concentration is very high. The desorption process was optimized as well. Thanks to this, previously adsorbed metals can be released and detected in square wave anodic stripping voltammetry. The limit of detection of this technique (using screen-printed electrodes) was 0.5 ppb for Pb. This means that by using a preconcentration GO-PDMS platform, a lower amount of Pb can be quantified because preconcentrated samples showed a current up to 30 times higher than that of non-preconcentrated one. This platform can be used for improved heavy metal sensing and also for its removal

    Toward integrated detection and graphene-based removal of contaminants in a lab-on-a-chip platform

    No full text
    A novel, miniaturized microfluidic platform was developed for the simultaneous detection and removal of polybrominated diphenyl ethers (PBDEs). The platform consists of a polydimethylsiloxane (PDMS) microfluidic chip for an immunoreaction step, a PDMS chip with an integrated screen-printed electrode (SPCE) for detection, and a PDMS-reduced graphene oxide (rGO) chip for physical adsorption and subsequent removal of PBDE residues. The detection was based on competitive immunoassay-linked binding between PBDE and PBDE modified with horseradish peroxidase (HRP-PBDE) followed by the monitoring of enzymatic oxidation of o-aminophenol (o-AP) using square wave anodic stripping voltammetry (SW-ASV). PBDE was detected with good sensitivity and a limit of detection similar to that obtained with a commercial colorimetric test (0.018 ppb), but with the advantage of using lower reagent volumes and a reduced analysis time. The use of microfluidic chips also provides improved linearity and a better reproducibility in comparison to those obtained with batch-based measurements using screen-printed electrodes. In order to design a detection system suitable for toxic compounds such as PBDEs, a reduced graphene oxide-PDMS composite was developed and optimized to obtain increased adsorption (based on both the hydrophobicity and π-π stacking between rGO and PBDE molecules) compared to those of non-modified PDMS. To the best of our knowledge, this is the first demonstration of electrochemical detection of flame retardants and a novel application of the rGO-PDMS composite in a biosensing system. This system can be easily applied to detect any analyte using the appropriate immunoassay and it supports operation in complex matrices such as seawater

    Graphene Oxide-Poly(dimethylsiloxane)-Based Lab-on-a-Chip Platform for Heavy-Metals Preconcentration and Electrochemical Detection

    No full text
    Herein, we present the application of a novel graphene oxide-poly(dimethylsiloxane) (GO-PDMS) composite in reversible adsorption/desorption, including detection of heavy metals. GO-PDMS was fabricated by simple blending of GO with silicon monomer in the presence of tetrahydrofuran, followed by polymerization initiated upon the addition of curing agent. We found GO concentration, curing agent concentration, pH, and contact time among the most important factors affecting the adsorption of Pb(II) used as a model heavy metal. The mechanism of adsorption is based on surface complexation, where oxygen active groups of negative charge can bind with bivalent metal ions Me(II). To demonstrate a practical application of this material, we fabricated microfluidic lab-on-a-chip platform for heavy-metals preconcentration and detection. This device consists of a screen-printed carbon electrode, a PDMS chip, and a GO-PDMS chip. The use of GO-PDMS preconcentration platform significantly improves the sensitivity of electrochemical detection of heavy metals (an increase of current up to 30× was observed), without the need of modifying electrodes or special reagents addition. Therefore, samples being so far below the limit of detection (0.5 ppb) were successfully detected. This approach is compatible also with real samples (seawater) as ionic strength was found as indifferent for the adsorption process. To the best of our knowledge, GO-PDMS was used for the first time in sensing application. Moreover, due to mechanical resistance and outstanding durability, it can be used multiple times unlike other GO-based platforms for heavy-metals adsorption

    Development of novel electrochemical and optical Lab-on-a-chip platforms for contaminants and biomarkers sensing /

    Get PDF
    Bibliografia.La detección de contaminantes peligrosos requiere especial atención debido a su posible toxicidad, baja concentración en muestras reales y, en la mayoría de los casos, una imposibilidad de llevar a cabo la detección a través de un metodo tan específico como el inmunoensayo. Una de las estrategias orientadas a la fácil detección de compuestos nocivos es el uso de plataformas microfluídicas llamadas Lab-on-a-chip. En el Capítulo 3, una innovadora plataforma microfluídica en miniatura es desarrollada para la detección simultánea y extracción de polibromodifenil éteres (PBDEs). La plataforma consiste en un chip microfluídico de polidimetilosiloxano (PDMS) para el paso de la inmunoreacción, un chip de PDMS con un electrodo serigrafiado de carbono (SPCE) integrado para la detección, y un chip de PDMS-óxido de grafeno reducido (rGO) para la adsorción física y posterior eliminación de residuos de PBDE. La detección se basó en un inmunoensayo competitivo entre PBDE y PBDE modificado con Peroxidasa de Rábano Silvestre (HRP-PBDE) seguido de un monitoreo de oxidación enzimática de o-aminofenol (o-AP), utilizando voltamperometría de onda cuadrada y resolución anódica (SW-ASV). PBDE fue detectado con una buena sensibilidad y un límite de detección similar al obtenido a través de una prueba colorimétrica comercial (0.018 ppb), pero con la ventaja de utilizar volúmenes reactivos más bajos y un tiempo de análisis reducido. Con el objetivo de diseñar un sistema de detección apropiado para compuestos tóxicos como PBDEs, un compósito de óxido de grafeno reducido y PDMS ha sido desarrollado y optimizado para obtener mayor adsorción (basados en hidropobicidad e interacción π-π entre moléculas de rGO y PBDE) comparado con los PDMS sin modificación. Este sistema se puede aplicar perfectamente para detectar cualquier análito utilizando el inmunoensayo apropiado y facilitar el funcionamiento en matrices tan complejas como el agua marina. En el Capítulo 4 se desarrolla un dispositivo LOC para la preconcentración y la detección simultánea de metales pesados. Dicho dispositivo consta de un electrodo serigrafiado de carbono, un chip de PDMS y otro de GO-PDMS. El chip de GO-PDMS fue fabricado y los factores más esenciales fueron optimizados, incluidos la concentración de GO y aquella del curador de PDMS. Se descubrió que la habilidad de adsorción es inversamente proporcional a la concentración de curador de PDMS en el compósito y proporcional a la concentración de GO. El mecanismo de adsorción está basado en una reacción de complejación , donde grupos activos de oxígeno con cargas negativas se pueden enlazar con metales bivalentes como el Pb. La adsorción más alta fue obtenida en pH=7. El GO-PDMS tiene una capacidad relativamente grande de adsorción, ya que incluso las muestras que contienen niveles más altas que 500 ppb (mayores a 500 ppb) son totalmente adsorbidas, teniendo en cuenta que tal concentración es muy alta. El proceso de desorción ha sido también optimizado. Gracias a ello, metales que habían sido previamente adsorbidos se pueden liberar y detectar en voltamperometría de Onda Cuadrada y Resolución Anódica. El límite de detección de esta técnica (utilizando electrodos serigrafiados de carbono) fue de 0.5 ppb para el plomo (Pb). Esto significa que utilizando una plataforma de preconcentración GO-PDMS, se pueden cuantificar cantidades más bajas de Pb, ya que las muestras preconcentradas mostraron una corriente de hasta 30 veces más alta que las no preconcentradas. Esta plataforma se puede utilizar para la detección mejorada de metales pesados y también para su eliminación

    Rapid on-chip apoptosis assay on human carcinoma cells based on annexin-V/quantum dot probes

    No full text
    Despite all the efforts made over years to study the cancer expression and the metastasis event, there is not a clear understanding of its origins and effective treatment. Therefore, more specialized and rapid techniques are required for studying cell behaviour under different drug-based treatments. Here we present a quantum dot signalling-based cell assay carried out in a segmental microfluidic device that allows studying the effect of anti-cancer drugs in cultured cell lines by monitoring phosphatidylserine translocation that occurs in early apoptosis. The developed platform combines the automatic generation of a drug gradient concentration, allowing exposure of cancer cells to different doses, and the immunolabeling of the apoptotic cells using quantum dot reporters. Thereby a complete cell-based assay for efficient drug screening is performed showing a clear correlation between drug dose and amount of cells undergoing apoptosis
    corecore