1,572 research outputs found

    Star-shaped Local Density of States around Vortices in a Type II Superconductor

    Full text link
    The electronic structure of vortices in a type II superconductor is analyzed within the quasi-classical Eilenberger framework. The possible origin of a sixfold ``star'' shape of the local density of states, observed by scanning tunneling microscope experiments on NbSe2_2, is examined in the light of the three effects; the anisotropic pairing, the vortex lattice, and the anisotropic density of states at the Fermi surface. Outstanding features of split parallel rays of this star are well explained in terms of an anisotropic ss-wave pairing. This reveals a rich internal electronic structure associated with a vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques

    Mixed-State Quasiparticle Spectrum for d-wave Superconductors

    Full text link
    Controversy concerning the pairing symmetry of high-TcT_c materials has motivated an interest in those measurable properties of superconductors for which qualitative differences exist between the s-wave and d-wave cases. We report on a comparison between the microscopic electronic properties of d-wave and s-wave superconductors in the mixed state. Our study is based on self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes equations for phenomenological BCS models which have s-wave and d-wave condensates in the absence of a magnetic field. We discuss differences between the s-wave and the d-wave local density-of-states, both near and away from vortex cores. Experimental implications for both scanning-tunneling-microscopy measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques

    Local density of states in the vortex lattice in a type II superconductor

    Full text link
    Local density of states (LDOS) in the triangular vortex lattice is investigated based on the quasi-classical Eilenberger theory. We consider the case of an isotropic s-wave superconductor with the material parameter appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the LDOS shows cylindrical structure around a vortex core. On the other hand, at a high field where the core regions substantially overlap each other, the LDOS is sixfold star-shaped structure due to the vortex lattice effect. The orientation of the star coincides with the experimental data of the scanning tunneling microscopy. That is, the ray of the star extends toward the nearest-neighbor (next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure

    Existence of temperature on the nanoscale

    Get PDF
    We consider a regular chain of quantum particles with nearest neighbour interactions in a canonical state with temperature TT. We analyse the conditions under which the state factors into a product of canonical density matrices with respect to groups of nn particles each and under which these groups have the same temperature TT. In quantum mechanics the minimum group size nminn_{min} depends on the temperature TT, contrary to the classical case. We apply our analysis to a harmonic chain and find that nmin=const.n_{min} = const. for temperatures above the Debye temperature and nminT3n_{min} \propto T^{-3} below.Comment: Version that appeared in PR

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur

    High-Precision Temperature Control of a Crystal Growth Furnace at 1,500 C

    Get PDF
    For crystal growth of semiconductor materials a short-term temperature stability of 0.1 C at 1500 C is one of the essential parameters to be addressed for achieving high-quality crystals. Hence, for temperature monitoring and control with high precision in a floating zone furnace two sets of thermo-sensors, type B thermocouples and optical fibre thermometers, have been implemented and successfully operated in the furnace for more than 2000 h. The optical fibre thermometers consist of an optical system made of sapphire (two fibres plus a prism in between for deflection) and transmit the infra-red radiation of the heater to the outside of the hot core of the furnace for pyrometric temperature measurement. A dedicated control algorithm has been set up which controlled the power settings to the individual heaters. Both sensor types showed no degradation after this period and yielded a short-term stability at 1200 C of 0.05 C (optical fibre thermometers), respectively 0.08 C (thermocouples)

    Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery

    Get PDF
    ObjectivesTo validate a new device (PiCCO system; Pulsion Medical Systems, Munich, Germany), we compared cardiac index derived from transpulmonary thermodilution and from pulse contour analysis in pediatric patients after surgery for congenital heart disease. We performed a prospective clinical study in a pediatric cardiac intensive care unit of a university hospital.MethodsTwenty-four patients who had had cardiac surgery for congenital heart disease (median age 4.2 years, range 1.4-15.2 years) were investigated in the first 24 hours after admission to the intensive care unit. A 3F thermodilution catheter was inserted in the femoral artery. Intracardiac shunts were excluded by echocardiography intraoperatively or postoperatively. Cardiac index derived from pulse contour analysis was documented in each patient 1, 4, 8, 12, 16, 20, and 24 hours after admission to the intensive care unit. Subsequently, a set of three measurements of thermodilution cardiac indices derived by injections into a central venous line was performed and calculated by the PiCCO system.ResultsThe mean bias between cardiac indices derived by thermodilution and those derived by pulse contour analysis over all data points was 0.05 (SD 0.4) L · min · m−2 (95% confidence interval 0.01-0.10). A strong correlation between thermodilution and contour analysis cardiac indices was calculated (Pearson correlation coefficient r = 0.93; coefficient of determination r2 = 0.86).ConclusionsPulse contour analysis is a suitable method to monitor cardiac index over a wide range of indices after surgery for congenital heart disease in pediatric patients. Pulse contour analysis allows online monitoring of cardiac index. The PiCCO device can be recalibrated with the integrated transpulmonary thermodilution within a short time frame

    Determination of the Coherence Length and the Cooper-Pair Size in Unconventional Superconductors by Tunnelling Spectroscopy

    Full text link
    The main purpose of the paper is to discuss a possibility of the determination of the values of the coherence length and the Cooper-pair size in unconventional superconductors by using tunnelling spectroscopy. In the mixed state of type-II superconductors, an applied magnetic field penetrates the superconductor in the form of vortices which form a regular lattice. In unconventional superconductors, the inner structure of a vortex core has a complex structure which is determined by the order parameter of the superconducting state and by the pairing wavefunction of the Cooper pairs. In clean superconductors, the spatial variations of the order parameter and the pairing wavefunction occur over the distances of the order of the coherence length and the Cooper-pair size, respectively. Therefore, by performing tunnelling spectroscopy along a line passing through a vortex core, one is able, in principle, to estimate the values of the coherent length and the Cooper-pair size.Comment: 13 pages, including 17 figure

    Local Versus Global Thermal States: Correlations and the Existence of Local Temperatures

    Get PDF
    We consider a quantum system consisting of a regular chain of elementary subsystems with nearest neighbor interactions and assume that the total system is in a canonical state with temperature TT. We analyze under what condition the state factors into a product of canonical density matrices with respect to groups of nn subsystems each, and when these groups have the same temperature TT. While in classical mechanics the validity of this procedure only depends on the size of the groups nn, in quantum mechanics the minimum group size nminn_{min} also depends on the temperature TT ! As examples, we apply our analysis to a harmonic chain and different types of Ising spin chains. We discuss various features that show up due to the characteristics of the models considered. For the harmonic chain, which successfully describes thermal properties of insulating solids, our approach gives a first quantitative estimate of the minimal length scale on which temperature can exist: This length scale is found to be constant for temperatures above the Debye temperature and proportional to T3T^{-3} below.Comment: 12 pages, 5 figures, discussion of results extended, accepted for publication in Phys. Rev.
    corecore