120 research outputs found

    Drift chamber with a c-shaped frame

    Get PDF
    We present the construction of a planar drift chamber with wires stretched between two arms of a c-shaped aluminium frame. The special shape of the frame allows to extendthe momentum acceptance of the COSY-11 detection system towards lower momenta without suppressing the high momentum particles. The proposed design allows for construction of tracking detectors covering small angles with respect to the beam, which can be installed and removed without dismounting the beam-pipe. For a three-dimensional track reconstruction a computer code was developed using a simple algorithm of hit preselection.Comment: submitted to Nucl. Instr. & Meth

    Neustonic versus epiphytic bacteria of eutrophic lake and their biodegradation ability on deltamethrin

    Get PDF
    This study evaluated biodegradation of the insecticide deltamethrin (1 ÎŒg l−1) by pure cultures of neustonic (n = 25) and epiphytic (n = 25) bacteria and by mixed cultures (n = 1), which consisted of a mixture of 25 bacterial strains isolated from the surface microlayer (SM ≈ 250 Όm) and epidermis of the Common Reed (Phragmites australis, (Cav.) Trin. ex Steud.) growing in the littoral zone of eutrophic lake CheƂmĆŒyƄskie. Results indicate that neustonic and epiphytic bacteria are characterized by a similar average capacity to degrade deltamethrin. After a 15-day incubation, bacteria isolated from the surface microlayer reduced the initial concentration of deltamethrin by 60%, while the average effectiveness of the bacteria found on the Common Reed equaled 47%

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
    • 

    corecore