12,945 research outputs found

    Magnetoresistance, noise properties and the Koshino-Taylor effect in the quasi-1D oxide KRu_4O_8

    Full text link
    The low temperature electronic and galvanomagnetic transport properties of the low dimensional oxide KRu_4O_8 are experimentally considered. A quadratic temperature variation of the resistivity is observed to be proportional to the residual resistivity. It shows the role of inelastic electron scattering against impurities, i.e. a large Koshino-Taylor effect, rather than a consequence of strong electronic correlations. In the same temperature range, the Kohler rule is not fulfilled. The resistance noise increases also sharply, possibly due to a strong coupling of carriers with lattice fluctuations in this low dimensional compound.Comment: accepted for publication in Europhysics Lette

    A discrete time relativistic Toda lattice

    Full text link
    Four integrable symplectic maps approximating two Hamiltonian flows from the relativistic Toda hierarchy are introduced. They are demostrated to belong to the same hierarchy and to examplify the general scheme for symplectic maps on groups equiped with quadratic Poisson brackets. The initial value problem for the difference equations is solved in terms of a factorization problem in a group. Interpolating Hamiltonian flows are found for all the maps.Comment: 32 pages, LaTe

    Poisson structures for reduced non-holonomic systems

    Full text link
    Borisov, Mamaev and Kilin have recently found certain Poisson structures with respect to which the reduced and rescaled systems of certain non-holonomic problems, involving rolling bodies without slipping, become Hamiltonian, the Hamiltonian function being the reduced energy. We study further the algebraic origin of these Poisson structures, showing that they are of rank two and therefore the mentioned rescaling is not necessary. We show that they are determined, up to a non-vanishing factor function, by the existence of a system of first-order differential equations providing two integrals of motion. We generalize the form of that Poisson structures and extend their domain of definition. We apply the theory to the rolling disk, the Routh's sphere, the ball rolling on a surface of revolution, and its special case of a ball rolling inside a cylinder.Comment: 22 page

    Resistivity studies under hydrostatic pressure on a low-resistance variant of the quasi-2D organic superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br: quest for intrinsic scattering contributions

    Full text link
    Resistivity measurements have been performed on a low (LR)- and high (HR)-resistance variant of the kappa-(BEDT-TTF)_2Cu[N(CN)_2]Br superconductor. While the HR sample was synthesized following the standard procedure, the LR crystal is a result of a somewhat modified synthesis route. According to their residual resistivities and residual resistivity ratios, the LR crystal is of distinctly superior quality. He-gas pressure was used to study the effect of hydrostatic pressure on the different transport regimes for both variants. The main results of these comparative investigations are (i) a significant part of the inelastic-scattering contribution, which causes the anomalous rho(T) maximum in standard HR crystals around 90 K, is sample dependent, i.e. extrinsic in nature, (ii) the abrupt change in rho(T) at T* approx. 40 K from a strongly temperature-dependent behavior at T > T* to an only weakly T-dependent rho(T) at T < T* is unaffected by this scattering contribution and thus marks an independent property, most likely a second-order phase transition, (iii) both variants reveal a rho(T) proportional to AT^2 dependence at low temperatures, i.e. for T_c < T < T_0, although with strongly sample-dependent coefficients A and upper bounds for the T^2 behavior measured by T_0. The latter result is inconsistent with the T^2 dependence originating from coherent Fermi-liquid excitations.Comment: 8 pages, 6 figure

    Lowest weight representations of super Schrodinger algebras in low dimensional spacetime

    Full text link
    We investigate the lowest weight representations of the super Schrodinger algebras introduced by Duval and Horvathy. This is done by the same procedure as the semisimple Lie algebras. Namely, all singular vectors within the Verma modules are constructed explicitly then irreducibility of the associated quotient modules is studied again by the use of singular vectors. We present the classification of irreducible Verma modules for the super Schrodinger algebras in (1+1) and (2+1) dimensional spacetime with N = 1, 2 extensions.Comment: 10pages, talk given at GROUP28 conference New Castle 26-30th July 2010, reference adde

    Van der Waals interaction between microparticle and uniaxial crystal with application to hydrogen atoms and multiwall carbon nanotubes

    Full text link
    The Lifshitz theory of the van der Waals force is extended for the case of an atom (molecule) interacting with a plane surface of an uniaxial crystal or with a long solid cylinder or cylindrical shell made of isotropic material or uniaxial crystal. For a microparticle near a semispace or flat plate made of an uniaxial crystal the exact expressions for the free energy of the van der Waals and Casimir-Polder interaction are presented. An approximate expression for the free energy of microparticle- cylinder interaction is obtained which becomes precise for microparticle-cylinder separations much smaller than cylinder radius. The obtained expressions are used to investigate the van der Waals interaction between hydrogen atoms (molecules) and graphite plates or multiwall carbon nanotubes. To accomplish this the behavior of graphite dielectric permittivities along the imaginary frequency axis is found using the optical data for the complex refractive index of graphite for the ordinary and extraordinary rays. It is shown that the position of hydrogen atoms inside multiwall carbon nanotubes is energetically preferable compared with outside.Comment: 23 pages, 8 figures, 2 tables. Minor corrections are made and new references added. Accepted for publication in Phys. Rev.

    Theoretical study of neutrino-induced coherent pion production off nuclei at T2K and MiniBooNE energies

    Get PDF
    We have developed a model for neutrino-induced coherent pion production off nuclei in the energy regime of interest for present and forthcoming neutrino oscillation experiments. It is based on a microscopic model for pion production off the nucleon that, besides the dominant Delta pole contribution, takes into account the effect of background terms required by chiral symmetry. Moreover, the model uses a reduced nucleon-to-Delta resonance axial coupling, which leads to coherent pion production cross sections around a factor two smaller than most of the previous theoretical estimates. In the coherent production, the main nuclear effects, namely medium corrections on the Delta propagator and the final pion distortion, are included. We have improved on previous similar models by taking into account the nucleon motion and employing a more sophisticated optical potential. As found in previous calculations the modification of the Delta self-energy inside the nuclear medium strongly reduces the cross section, while the final pion distortion mainly shifts the peak position to lower pion energies. The angular distribution profiles are not much affected by nuclear effects. Nucleon motion increases the cross section by 15% at neutrino energies of 650 MeV, while Coulomb effects on charged pions are estimated to be small. Finally, we discuss at length the deficiencies of the Rein-Sehgal pion coherent production model for neutrino energies below 2 GeV, and in particular for the MiniBooNE and T2K experiments. We also predict flux averaged cross sections for these two latter experiments and K2K.Comment: 19 latex pages, 10 figures, 2 tables. Minor changes. Version accepted for publication in Physical Review

    A Factorization Law for Entanglement Decay

    Full text link
    We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.Comment: 4 pages, 5 figure

    Quasiparticle Bound States and Low-Temperature Peaks of the Conductance of NIS Junctions in d-Wave Superconductors

    Full text link
    Quasiparticle states bound to the boundary of anisotropically paired superconductors, their contributions to the density of states and to the conductance of NIS junctions are studied both analytically and numerically. For smooth surfaces and real order parameter we find some general results for the bound state energies. In particular, we show that under fairly general conditions quasiparticle states with nonzero energies exist for momentum directions within a narrow region around the surface normal. The energy dispersion of the bound states always has an extremum for the direction along the normal. Along with the zero-bias anomaly due to midgap states, we find, for quasi two-dimensional materials, additional low-temperature peaks in the conductance of NIS junctions for voltages determined by the extrema of the bound state energies. The influence of interface roughness on the conductance is investigated within the framework of Ovchinnikov's model. We show that nonzero-bias peaks at low temperatures may give information on the order parameter in the bulk, even though it is suppressed at the surface.Comment: 14 pages, PostScrip

    Cooling of Neutron Stars: Two Types of Triplet Neutron Pairing

    Full text link
    We consider cooling of neutron stars (NSs) with superfluid cores composed of neutrons, protons, and electrons (assuming singlet-state pairing of protons, and triplet-state pairing of neutrons). We mainly focus on (nonstandard) triplet-state pairing of neutrons with the mJ=2|m_J| = 2 projection of the total angular momentum of Cooper pairs onto quantization axis. The specific feature of this pairing is that it leads to a power-law (nonexponential) reduction of the emissivity of the main neutrino processes by neutron superfluidity. For a wide range of neutron critical temperatures TcnT_{cn}, the cooling of NSs with the mJ=2|m_J| = 2 superfluidity is either the same as the cooling with the mJ=0m_J = 0 superfluidity, considered in the majority of papers, or much faster. The cooling of NSs with density dependent critical temperatures Tcn(ρ)T_{cn}(\rho) and Tcp(ρ)T_{cp}(\rho) can be imitated by the cooling of the NSs with some effective critical temperatures TcnT_{cn} and TcpT_{cp} constant over NS cores. The hypothesis of strong neutron superfluidity with mJ=2|m_J| = 2 is inconsistent with current observations of thermal emission from NSs, but the hypothesis of weak neutron superfluidity of any type does not contradict to observations.Comment: 10 pages, 6 figure
    corecore