12 research outputs found

    Eddy-driven subduction exports particulate organic carbon from the spring bloom

    Get PDF
    The export of particulate organic carbon (POC) from the surface ocean to depth is traditionally ascribed to sinking. Here, we show that a dynamic eddying flow field subducts surface water with high concentrations of nonsinking POC. Autonomous observations made by gliders during the North Atlantic spring bloom reveal anomalous features at depths of 100 to 350 meters with elevated POC, chlorophyll, oxygen, and temperature-salinity characteristics of surface water. High-resolution modeling reveals that during the spring transition, intrusions of POC-rich surface water descend as coherent, 1- to 10-kilometer–scale filamentous features, often along the perimeter of eddies. Such a submesoscale eddy-driven flux of POC is unresolved in global carbon cycle models but can contribute as much as half of the total springtime export of POC from the highly productive subpolar oceans

    Simultaneous Polarimeter Retrievals of Microphysical Aerosol and Ocean Color Parameters from the MAPP Algorithm with Comparison to High Spectral Resolution Lidar Aerosol and Ocean Products

    Get PDF
    We present an optimal estimation based retrieval framework, the Microphysical Aerosol Properties from Polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High Spectral Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and ngstrm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within 0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of also 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements

    PACE Technical Report Series, Volume 7: Ocean Color Instrument (OCI) Concept Design Studies

    Get PDF
    Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products

    Tetranuclear carbonyl clusters

    No full text

    Pattern recognition by pentraxins

    No full text
    Pentraxins are a family of evolutionarily conserved pattern-recognition proteins that are made up of five identical subunits. Based on the primary structure of the subunit, the pentraxins are divided into two groups: short pentraxins and long pentraxins. C-reactive protein (CRP) and serum amyloid P-component (SAP) are the two short pentraxins. The prototype protein of the long pentraxin group is pentraxin 3 (PTX3). CRP and SAP are produced primarily in the liver while PTX3 is produced in a variery oftissues during inflammation. The main functions of short pentraxins are to recognize a variery of pathogenic agents and then to either eliminate them or neutralize their harmful effects by utilizing the complement pathways and macrophages in the host. CRP binds to modified low-densiry lipoproteins, bacterial polysaccharides, apoptotic cells, and nuclear materials. By virtue of these recognition functions, CRP participates in the resolution ofcardiovascular, infectious, and autoimmune diseases. SAP recognizes carbohydrates, nuclear substances, and amyloid fibrils and thus participates in the resolution of infectious diseases, autoimmuniry, and amyloidosis. PTX3 interacts with several ligands, including growth factors, extracellular matrix component and selected pathogens, playing a role in complement activation and facilitating pathogen recognition by phagoeytes. In addition, data in gene-targeted mice show that PTX3 is essential in female fertiliry, participating in the assembly of the cumulus oophorus extracellular matrix. PTX3 is therefore a nonredundant component ofthe humoral arm of innate immuniry as well as a tuner of inflammation. Thus, in conjunction with the other components ofinnate immuniry, the pentraxins use their pattern-recognition properry for the benefit of the host

    Properties and preparations of Si-Si linkages

    No full text
    corecore