49 research outputs found

    Teacher leadership in Lithuania: Are teachers prepared to cooperate?

    Get PDF
    Over the past 25 years, Lithuania has established a system of education based on humanistic and democratic relationships. In this system, teacher leadership is highly important, as it serves as the basis for school community ā€œreculturisationā€ and improvement. The aim of the current article is to overview the situation of teacher leadership in Lithuania, emphasising the aspect of teacher cooperation. The three characteristics of Lithuanian teacher leadership that we present demonstrate that teacher cooperation remains a challenge in the country. Teachers are reluctant to discuss and render improvement proposals, and lack experience of teamwork. Nevertheless, it is to be expected that the ongoing project ā€œTime for Leaders,ā€ will produce the necessary cultural change required to create a learning network of teachers and establish genuine, open and professional dialogue

    Organizational consulting models and performance improvement: The case of rural schools in Lithuania

    Get PDF
    The present article is concerned with a possible organizational consulting model of schools in rural areas with unfavorable social, economic and cultural (SEC) environments. Specifically, the study offers a case study analysis of five rural schools of one Lithuanian municipality. The results yield a conceptual framework for a model of rural school consultation. The proposed model is in line with the theoretical approaches of the dynamic and the ecological theories. The obtained research results offer suggestions and insights for organizational development theory and practice

    Transcription regulation of the type II restriction-modification system AhdI

    Get PDF
    The Restriction-modification system AhdI contains two convergent transcription units, one with genes encoding methyltransferase subunits M and S and another with genes encoding the controller (C) protein and the restriction endonuclease (R). We show that AhdI transcription is controlled by two independent regulatory loops that are well-optimized to ensure successful establishment in a naĆÆve bacterial host. Transcription from the strong MS promoter is attenuated by methylation of an AhdI site overlapping the -10 element of the promoter. Transcription from the weak CR promoter is regulated by the C protein interaction with two DNA-binding sites. The interaction with the promoter-distal high-affinity site activates transcription, while interaction with the weaker promoter-proximal site represses it. Because of high levels of cooperativity, both C protein-binding sites are always occupied in the absence of RNA polymerase, raising a question how activated transcription is achieved. We develop a mathematical model that is in quantitative agreement with the experiment and indicates that RNA polymerase outcompetes C protein from the promoter-proximal-binding site. Such an unusual mechanism leads to a very inefficient activation of the R gene transcription, which presumably helps control the level of the endonuclease in the cell

    Transcription regulation of the type II restriction-modification system AhdI

    Get PDF
    The Restriction-modification system AhdI contains two convergent transcription units, one with genes encoding methyltransferase subunits M and S and another with genes encoding the controller (C) protein and the restriction endonuclease (R). We show that AhdI transcription is controlled by two independent regulatory loops that are well-optimized to ensure successful establishment in a naĆÆve bacterial host. Transcription from the strong MS promoter is attenuated by methylation of an AhdI site overlapping the -10 element of the promoter. Transcription from the weak CR promoter is regulated by the C protein interaction with two DNA-binding sites. The interaction with the promoter-distal high-affinity site activates transcription, while interaction with the weaker promoter-proximal site represses it. Because of high levels of cooperativity, both C protein-binding sites are always occupied in the absence of RNA polymerase, raising a question how activated transcription is achieved. We develop a mathematical model that is in quantitative agreement with the experiment and indicates that RNA polymerase outcompetes C protein from the promoter-proximal-binding site. Such an unusual mechanism leads to a very inefficient activation of the R gene transcription, which presumably helps control the level of the endonuclease in the cell

    Transcription regulation of restriction-modification system Esp1396I

    Get PDF
    The convergently transcribed restriction (R) and methylase (M) genes of the Restrictionā€“Modification system Esp1396I are tightly regulated by a controller (C) protein that forms part of the CR operon. We have mapped the transcriptional start sites from each promoter and examined the regulatory role of C.Esp1396I inĀ vivo and inĀ vitro. C-protein binding at the CR and M promoters was analyzed by DNA footprinting and a range of biophysical techniques. The distal and proximal C-protein binding sites at the CR promoter are responsible for activation and repression, respectively. In contrast, a C-protein dimer binds to a single site at the M-promoter to repress the gene, with an affinity much greater than for the CR promoter. Thus, during establishment of the system in a naĆÆve host, the activity of the M promoter is turned off early, preventing excessive synthesis of methylase. Mutational analysis of promoter binding sites reveals that the tetranucleotide inverted repeats long believed to be important for C-protein binding to DNA are less significant than previously thought. Instead, symmetry-related elements outside of these repeats appear to be critical for the interaction and are discussed in terms of the recent crystal structure of C.Esp139I bound to the CR promoter

    Transcription regulation of restriction-modification system Esp1396I

    Get PDF
    The convergently transcribed restriction (R) and methylase (M) genes of the Restrictionā€“Modification system Esp1396I are tightly regulated by a controller (C) protein that forms part of the CR operon. We have mapped the transcriptional start sites from each promoter and examined the regulatory role of C.Esp1396I inĀ vivo and inĀ vitro. C-protein binding at the CR and M promoters was analyzed by DNA footprinting and a range of biophysical techniques. The distal and proximal C-protein binding sites at the CR promoter are responsible for activation and repression, respectively. In contrast, a C-protein dimer binds to a single site at the M-promoter to repress the gene, with an affinity much greater than for the CR promoter. Thus, during establishment of the system in a naĆÆve host, the activity of the M promoter is turned off early, preventing excessive synthesis of methylase. Mutational analysis of promoter binding sites reveals that the tetranucleotide inverted repeats long believed to be important for C-protein binding to DNA are less significant than previously thought. Instead, symmetry-related elements outside of these repeats appear to be critical for the interaction and are discussed in terms of the recent crystal structure of C.Esp139I bound to the CR promoter

    Systematic prediction of control proteins and their DNA binding sites

    Get PDF
    We present here the results of a systematic bioinformatics analysis of control (C) proteins, a class of DNA-binding regulators that control time-delayed transcription of their own genes as well as restriction endonuclease genes in many type II restriction-modification systems. More than 290 C protein homologs were identified and DNA-binding sites for āˆ¼70% of new and previously known C proteins were predicted by a combination of phylogenetic footprinting and motif searches in DNA upstream of C protein genes. Additional analysis revealed that a large proportion of C protein genes are translated from leaderless RNA, which may contribute to time-delayed nature of genetic switches operated by these proteins. Analysis of genetic contexts of newly identified C protein genes revealed that they are not exclusively associated with restriction-modification genes; numerous instances of associations with genes originating from mobile genetic elements were observed. These instances might be vestiges of ancient horizontal transfers and indicate that during evolution ancestral restriction-modification system genes were the sites of mobile elements insertions

    Concerted action at eight phosphodiester bonds by the BcgI restriction endonuclease

    Get PDF
    The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recognition sequence, it has to act in trans, bridging two separate DNA molecules. We also show that BcgI makes the two DSBs at an individual site in a highly concerted manner. Intermediates cut on one side of the site do not accumulate during the course of the reaction: instead, the DNA is converted straight to the final products cut on both sides. On DNA with two sites, BcgI bridges the sites in cis and then generally proceeds to cut both strands on both sides of both sites without leaving the DNA. The BcgI restriction enzyme can thus excise two DNA segments together, by cleaving eight phosphodiester bonds within a single-DNA binding event

    The MmeI family: type II restrictionā€“modification enzymes that employ single-strand modification for host protection

    Get PDF
    The type II restriction endonucleases form one of the largest families of biochemically-characterized proteins. These endonucleases typically share little sequence similarity, except among isoschizomers that recognize the same sequence. MmeI is an unusual type II restriction endonuclease that combines endonuclease and methyltransferase activities in a single polypeptide. MmeI cuts DNA 20 bases from its recognition sequence and modifies just one DNA strand for host protection. Using MmeI as query we have identified numerous putative genes highly similar to MmeI in database sequences. We have cloned and characterized 20 of these MmeI homologs. Each cuts DNA at the same distance as MmeI and each modifies a conserved adenine on only one DNA strand for host protection. However each enzyme recognizes a unique DNA sequence, suggesting these enzymes are undergoing rapid evolution of DNA specificity. The MmeI family thus provides a rich source of novel endonucleases while affording an opportunity to observe the evolution of DNA specificity. Because the MmeI family enzymes employ modification of only one DNA strand for host protection, unlike previously described type II systems, we propose that such single-strand modification systems be classified as a new subgroup, the type IIL enzymes, for Lone strand DNA modification

    DNA cleavage and methylation specificity of the single polypeptide restrictionā€“modification enzyme LlaGI

    Get PDF
    LlaGI is a single polypeptide restrictionā€“modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a Ī³-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5ā€²-CTnGAyG-3ā€² (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5ā€²-CrTCnAG-3ā€² being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restrictionā€“modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restrictionā€“modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide)
    corecore