325 research outputs found

    Intermediate depth and deep earthquakes: complexity of the Ibero-Magrhebian region

    Get PDF
    The Ibero-Magrhebian region is located at the plate boundary between Eurasia and Africa and it is a tectonically complex region. A sign of the complexity, is the occurrence of intermediate depth earthquakes (40<h<150 km), located in south Spain, between Granada- Malaga and at the west part of Alboran Sea, together with the occurrence of very deep earthquakes (h≈650 km) near Dúrcal (Granada). Intermediate depth shocks are mostly confined within a relatively narrow region (50 km width) located East of Gibraltar, extending NNE-SSW from the Malaga (Spain) area to a region offshore the Moroccan coast. We have studied focal mechanisms of these earthquakes from inversion of body wave. The stress pattern in the Ibero-Maghrebian region obtained from solutions of selected shallow, intermediate depth and deep shocks show the complexity of the region. The seismotectonic scheme show horizontal compression in NNW-SSE direction in the Gulf of Cádiz. In northern Africa, the stress pattern changes and it corresponds to strike-slip motion, with extends from west of the Gibraltar Strait until the western Algeria, where in the Oran region the horizontal compression N-S reapers, with a clear domain of the thrusting faults in Algeria. In the Alboran Sea there is horizontal extension in E-W direction for shallow events. The intermediate depth shock located at the western part of the Alboran Sea show a change on the stress pattern: to the west of 4.5oW, focal mechanisms show vertical tension axis, while to the east, they show vertical pressure axis. These stress orientations are not present in deep earthquakes, where the pressure axes dip 45o to the east. The intermediate and deep earthquakes may be related to some kind of subduction or delamination processes, more recent for the intermediate depth shocks and older for the very deep activity

    Effect of Prosopis flexuosa on understory species and its importance to pastoral management in woodlands of the Central Monte Desert

    Get PDF
    In the Monte Biogeographic Province, located in the arid region of Argentina, the presence of Prosopis flexuosa DC. produces spatial heterogeneity through edaphic modifications and microclimate changes. This results in vegetation patches differing in species composition and abundance. However, this interaction can be modified by the occurrence of gradients of biotic stress or disturbance intensity. In particular, grazing has been observed to enhance or reduce vegetation heterogeneity. Such complex of interactions could determine forage availability for cattle in one of the driest areas of the Monte Desert. We assessed the effect of Prosopis on understory species and analyzed whether the outcomes of this interaction differed with distance to watering points, as a proxy of grazing intensity, in the Northeast of Mendoza Province, Argentina. We used a two-way factorial design including the following factors: 1) microsite (under the cover of P. flexuosa trees and in intercanopy microsites) and 2) distance to watering points ("near the watering point", 500-700 m away, and "far from the watering point", 3-4 km away). Cover of each species, total cover, bare soil, and litter were recorded, and plant diversity, richness, and evenness were estimated with the modified Point Quadrat method. Results showed that P. flexuosa cover, distance from watering points, and the interaction between them determined species composition, abundance and spatial distribution of understory species, and were, consequently, a determining factor for forage availability. The presence of P. flexuosa enhances carrying capacity by supporting higher abundance of grasses under its canopy. Near watering points, high grazing intensity appears to disrupt the patches formed under P. flexuosa canopies, reducing the differences between microsites.In the Monte Biogeographic Province, located in the arid region of Argentina, the presence of Prosopis flexuosa DC. produces spatial heterogeneity through edaphic modifications and microclimate changes. This results in vegetation patches differing in species composition and abundance. However, this interaction can be modified by the occurrence of gradients of biotic stress or disturbance intensity. In particular, grazing has been observed to enhance or reduce vegetation heterogeneity. Such complex of interactions could determine forage availability for cattle in one of the driest areas of the Monte Desert. We assessed the effect of Prosopis on understory species and analyzed whether the outcomes of this interaction differed with distance to watering points, as a proxy of grazing intensity, in the Northeast of Mendoza Province, Argentina. We used a two-way factorial design including the following factors: 1) microsite (under the cover of P. flexuosa trees and in intercanopy microsites) and 2) distance to watering points ("near the watering point", 500-700 m away, and "far from the watering point", 3-4 km away). Cover of each species, total cover, bare soil, and litter were recorded, and plant diversity, richness, and evenness were estimated with the modified Point Quadrat method. Results showed that P. flexuosa cover, distance from watering points, and the interaction between them determined species composition, abundance and spatial distribution of understory species, and were, consequently, a determining factor for forage availability. The presence of P. flexuosa enhances carrying capacity by supporting higher abundance of grasses under its canopy. Near watering points, high grazing intensity appears to disrupt the patches formed under P. flexuosa canopies, reducing the differences between microsites

    Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study

    Get PDF
    Regulation of gene transcription is an essential mechanism for differentiation and adaptation of organisms. A key actor in this regulation process is the repressor element 1 (RE1)-silencing transcription factor (REST), a transcriptional repressor that controls more than 2000 putative target genes, most of which are neuron-specific. With the purpose of modulating REST expression, we exploited synthetic, ad hoc designed, RNA binding proteins (RBPs) able to specifically target and dock to REST mRNA. Among the various families of RBPs, we focused on the Pumilio and FBF (PUF) proteins, present in all eukaryotic organisms and controlling a variety of cellular functions. Here, a combined experimental and computational approach was used to design and test 8- and 16-repeat PUF proteins specific for REST mRNA. We explored the conformational properties and atomic features of the PUF-RNA recognition code by Molecular Dynamics simulations. Biochemical assays revealed that the 8- and 16-repeat PUF-based variants specifically bind the endogenous REST mRNA without affecting its translational regulation. The data also indicate a key role of stacking residues in determining the binding specificity. The newly characterized REST-specific PUF-based constructs act as excellent RNA-binding modules and represent a versatile and functional platform to specifically target REST mRNA and modulate its endogenous expression

    Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO2 phase change layers

    Get PDF
    Active, ultra-fast external control of the emission properties at the nanoscale is of great interest for chip-scale, tunable and efficient nanophotonics. Here we investigated the emission control of dipolar emitters coupled to a nanostructure made of an Au nanoantenna, and a thin vanadium dioxide (VO2) layer that changes from semiconductor to metallic state. If the emitters are sandwiched between the nanoantenna and the VO2 layer, the enhancement and/or suppression of the nanostructure’s magnetic dipole resonance enabled by the phase change behavior of the VO2 layer can provide a high contrast ratio of the emission efficiency. We show that a single nanoantenna can provide high magnetic field in the emission layer when VO2 is metallic, leading to high emission of the magnetic dipoles; this emission is then lowered when VO2 switches back to semiconductor. We finally optimized the contrast ratio by considering different orientation, distribution and nature of the dipoles, as well as the influence of a periodic Au nanoantenna pattern. As an example of a possible application, the design is optimized for the active control of an Er3+ doped SiO2 emission layer. The combination of the emission efficiency increase due to the plasmonic nanoantenna resonances and the ultra-fast contrast control due to the phase-changing medium can have important applications in tunable efficient light sources and their nanoscale integration

    SURGERY IN MALIGNANT GERM CELL TUMORS OF CHILDHOOD. RESULTS OF THE SECOND ITALIAN COOPERATIVE STUDY TCG 98

    Get PDF
    Analysis of treatment and results of the patientsenrolled in the Italian TCG-98 Study, still open and comparison of data with those of the previous Studt TCG-9

    Interfacing Graphene-Based Materials With Neural Cells

    Get PDF
    The scientific community has witnessed an exponential increase in the applications of graphene and graphene-based materials in a wide range of fields, from engineering to electronics to biotechnologies and biomedical applications. For what concerns neuroscience, the interest raised by these materials is two-fold. On one side, nanosheets made of graphene or graphene derivatives (graphene oxide, or its reduced form) can be used as carriers for drug delivery. Here, an important aspect is to evaluate their toxicity, which strongly depends on flake composition, chemical functionalization and dimensions. On the other side, graphene can be exploited as a substrate for tissue engineering. In this case, conductivity is probably the most relevant amongst the various properties of the different graphene materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation, which holds a great potential in regenerative medicine. In this review, we try to give a comprehensive view of the accomplishments and new challenges of the field, as well as which in our view are the most exciting directions to take in the immediate future. These include the need to engineer multifunctional nanoparticles (NPs) able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs. We describe the state-of-the-art in the use of graphene materials to engineer three-dimensional scaffolds to drive neuronal growth and regeneration in vivo, and the possibility of using graphene as a component of hybrid composites/multi-layer organic electronics devices. Last but not least, we address the need of an accurate theoretical modeling of the interface between graphene and biological material, by modeling the interaction of graphene with proteins and cell membranes at the nanoscale, and describing the physical mechanism(s) of charge transfer by which the various graphene materials can influence the excitability and physiology of neural cells

    Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures

    Get PDF
    Devising and constructing biocompatible devices for nervous system regeneration is an extremely challenging task. Besides tackling the issue of biocompatibility, biomaterials for neuroscience applications should mimic the complex environment of the extracellular matrix, which in vivo provides neurons with a series of cues and signals to guide cells towards their appropriate targets. In this work, a novel nanopatterned biocompatible poly-ε-caprolactone (PCL) film is realized to assist the attachment and growth of primary hippocampal neurons. Costly and time-consuming processes can be avoided using plasma-surface nanotexturing obtained by a mixed gas SF6/Ar at -5 °C. The intrinsic composition and line topography of nanopatterned PCL ensure healthy development of the neuronal network, as shown by confocal microscopy, by analysing the expression of a range of neuronal markers typical of mature cultures, as well as by scanning electron microscopy. In addition, we show that surface nanopatterning improves differentiation of neurons compared to flat PCL films, while no neural growth was observed on either flat or nanopatterned substrates in the absence of a poly-d-lysine coating. Thus, we successfully optimized a nanofabrication protocol to obtain nanostructured PCL layers endowed with several mechanical and structural characteristics that make them a promising, versatile tool for future tissue engineering studies aimed at neural tissue regeneration

    Seismic and Tsunamigenic Characteristics of a Multimodal Rupture of Rapid and Slow Stages

    Get PDF
    On 12 August 2021, a >220 s lasting complex earthquake with Mw > 8.2 hit the South Sandwich Trench. Due to its remote location and short interevent times, reported earthquake parameters varied significantly between different international agencies. We studied the complex rupture by combining different seismic source characterization techniques sensitive to different frequency ranges based on teleseismic broadband recordings from 0.001 to 2 Hz, including point and finite fault inversions and the back-projection of high-frequency signals. We also determined moment tensor solutions for 88 aftershocks. The rupture initiated simultaneously with a rupture equivalent to a Mw 7.6 thrust earthquake in the deep part of the seismogenic zone in the central subduction interface and a shallow megathrust rupture, which propagated unilaterally to the south with a very slow rupture velocity of 1.2 km/s and varying strike following the curvature of the trench. The slow rupture covered nearly two-thirds of the entire subduction zone length, and with Mw 8.2 released the bulk of the total moment of the whole earthquake. Tsunami modeling indicates the inferred shallow rupture can explain the tsunami records. The southern segment of the shallow rupture overlaps with another activation of the deeper part of the megathrust equivalent to Mw 7.6. The aftershock distribution confirms the extent and curvature of the rupture. Some mechanisms are consistent with the mainshocks, but many indicate also activation of secondary faults. Rupture velocities and radiated frequencies varied strongly between different stages of the rupture, which might explain the variability of published source parameters

    Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation

    Get PDF
    The dynamics of magma deep in the Earth’s crust are difficult to capture by geophysical monitoring. Since May 2018, a seismically quiet area offshore of Mayotte in the western Indian Ocean has been affected by complex seismic activity, including long-duration, very-long-period signals detected globally. Global Navigation Satellite System stations on Mayotte have also recorded a large surface deflation offshore. Here we analyse regional and global seismic and deformation data to provide a one-year-long detailed picture of a deep, rare magmatic process. We identify about 7,000 volcano-tectonic earthquakes and 407 very-long-period seismic signals. Early earthquakes migrated upward in response to a magmatic dyke propagating from Moho depth to the surface, whereas later events marked the progressive failure of the roof of a magma reservoir, triggering its resonance. An analysis of the very-long-period seismicity and deformation suggests that at least 1.3 km3 of magma drained from a reservoir of 10 to 15 km diameter at 25 to 35 km depth. We demonstrate that such deep offshore magmatic activity can be captured without any on-site monitoring

    Optothermal characterization of vanadium dioxide films by Infrared Thermography

    Get PDF
    The thickness of vanadium dioxide (VO2) films is a crucial parameter for the study of their optical and thermal properties. In this paper we studied the effect of the film thickness on the thermal hysteresis loop during the phase transition of VO2 deposited on a sapphire substrate by pulsed laser deposition (PLD), by the application of the Infrared Thermography technique. We measure the main thermal hysteresis parameters of VO2 samples with different thicknesses in the LWIR range (8–14 μm) showing how the transition temperature during the heating and cooling cycles, and the width of the hysteresis loop, may change with thickness. We analyzed and compared the obtained results with, in situ Grazing Incidence X-Ray Diffraction (GI-XRD). A good agreement between the results obtained with the two techniques was found demonstrating the reliability of the IR Thermography as a quantitative characterization tool. The results show that the structural and IR emissivity properties of the VO2 layer exhibit a dynamic range dependent on the layer thickness due to a correlation with the crystalline grain size. This has important effects in view of a tailored energy management for the use of those materials as smart radiators or smart windows
    • …
    corecore