119 research outputs found

    Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter

    Full text link
    The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in Italy, will search for invisible decays of the hypothetical dark photon via the process e+eγAe^+e^-\rightarrow \gamma A', where the AA' escapes detection. The dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We report here on measurement and simulation studies of the performance of the Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting 2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of less than 200 ps, which is satisfied by the choice of PbF2_2 crystals and the newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns) and a single-crystal energy resolution of 5.7%/E\sqrt{E} with light yield of 2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test Facility of LNF. We also propose the investigation of a two-PMT solution coupled to a single PbF2_2 crystal for higher-energy applications, which has potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie

    Reinterpretation of LHC results for new physics: Status and recommendations after run 2

    Get PDF
    We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data

    The physics case of a 3 TeV muon collider stage

    Get PDF
    In the path towards a muon collider with center of mass energy of 10 TeV ormore, a stage at 3 TeV emerges as an appealing option. Reviewing the physicspotential of such muon collider is the main purpose of this document. In orderto outline the progression of the physics performances across the stages, a fewsensitivity projections for higher energy are also presented. There are manyopportunities for probing new physics at a 3 TeV muon collider. Some of themare in common with the extensively documented physics case of the CLIC 3 TeVenergy stage, and include measuring the Higgs trilinear coupling and testingthe possible composite nature of the Higgs boson and of the top quark at the 20TeV scale. Other opportunities are unique of a 3 TeV muon collider, and stemfrom the fact that muons are collided rather than electrons. This isexemplified by studying the potential to explore the microscopic origin of thecurrent gg-2 and BB-physics anomalies, which are both related with muons.<br

    Muon Collider Physics Summary

    Get PDF
    The perspective of designing muon colliders with high energy and luminosity,which is being investigated by the International Muon Collider Collaboration,has triggered a growing interest in their physics reach. We present a concisesummary of the muon colliders potential to explore new physics, leveraging onthe unique possibility of combining high available energy with very precisemeasurements.<br

    Muon Collider Physics Summary

    Get PDF
    The perspective of designing muon colliders with high energy and luminosity,which is being investigated by the International Muon Collider Collaboration,has triggered a growing interest in their physics reach. We present a concisesummary of the muon colliders potential to explore new physics, leveraging onthe unique possibility of combining high available energy with very precisemeasurements.<br

    The physics case of a 3 TeV muon collider stage

    Get PDF
    In the path towards a muon collider with center of mass energy of 10 TeV ormore, a stage at 3 TeV emerges as an appealing option. Reviewing the physicspotential of such muon collider is the main purpose of this document. In orderto outline the progression of the physics performances across the stages, a fewsensitivity projections for higher energy are also presented. There are manyopportunities for probing new physics at a 3 TeV muon collider. Some of themare in common with the extensively documented physics case of the CLIC 3 TeVenergy stage, and include measuring the Higgs trilinear coupling and testingthe possible composite nature of the Higgs boson and of the top quark at the 20TeV scale. Other opportunities are unique of a 3 TeV muon collider, and stemfrom the fact that muons are collided rather than electrons. This isexemplified by studying the potential to explore the microscopic origin of thecurrent gg-2 and BB-physics anomalies, which are both related with muons.<br

    Towards a muon collider

    Get PDF

    Reinterpretation of LHC Results for New Physics: Status and recommendations after Run 2

    Get PDF
    We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data

    Measurements of multijet event isotropies using optimal transport with the ATLAS detector

    Get PDF
    A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb−1 of proton-proton collisions with √s = 13 TeV centre-of-mass energy recorded with the ATLAS detector at CERN’s Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the ‘Energy-Mover’s Distance’. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets’ transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale
    corecore