53 research outputs found

    Application of organic matter to alleviate soil sickness: effects on crop yield, soil properties and diseases suppression

    Get PDF
    Soil sickness represents a condition in which the long-term use of non-sustainable agricultural practices causes changes in the physical, chemical and biological properties of soils that, in turn, negatively affects plant vegetative and reproductive performances. By an extensive analysis of literature, we found that soil sickness is pervasive in agro-ecosystems, occurring in 111 cultivated plants belonging to 41 taxonomic families. To explain the phenomenon of soil sickness, three main hypotheses have been proposed, including soil nutrient depletion or imbalance, build-up of soilborne pathogens coupled with shift in the composition of soil microbial community composition, and presence of phytotoxic and autotoxic compounds. Starting from a detailed analysis of mechanisms it was previously suggested that all proposed hypotheses have as common origin, i.e. the alteration of organic matter cycle caused by intensive agricultural practices. Based on this consideration, in the present thesis different organic management strategies, in terms of organic matter type and application frequency, were used in order to recover a soil affected by soil sickness. Soil was subjected for two years to 11 different treatments including two ordinary soil managements, eight organic amendment treatments and one untreated soil as the control. At the end of each year, cumulated crop production of Eruca sativa, soil properties and soil microbiota were evaluated. Compared to the use of ordinary managements, the beneficial effects on soil properties and microbial community derived by the use of organic amendments were evident already after one year of conditioning. In detail, pH values near the neutrality, high soil organic carbon content and good level of soil aggregation, as well as an improvement in soil microbial functionality, richness and diversity were observed in soil treated with organic amendments, especially when easily decomposable materials rich in labile carbon and organic nitrogen (i.e., alfalfa plus glucose) were applied at high rate once a year. In contrast, cumulated crop production at the end of the first year was higher in soil with ordinary managements than in soil with application of organic materials. However, during the second year of soil conditioning, an increase in productivity and quality of the crop was observed in soil treated with organic materials as compared to the soil subjected to conventional management. Finally, soil conditioned for two years was used to evaluate the effects that ordinary and organic management strategies had in the disease suppression of soilborne phytopathogenic fungi and viruses. Application of organic amendments, by positively affecting soil properties and soil microbiota, showed a restoration of natural soil suppressivines against soilborne pathogens (i.e., Sclerotinia sclerotiorum and Fusarium oxysporum f. sp. raphani). Surprisingly, this study reports for the first time that the use of organic matter reduces the incidence of Tomato spotted wilt virus infection, as well as the mortality of infected plants, probably by the induction of systematic resistance. In conclusion, this study revealed that applications of organic materials have an immediate positive effect on soil fertility as well as on soil microbiota, while the increase of crop productivity are of longer-term nature. In addition, the positive effect that organic amendments have on microbial communities, including their abundance, diversity and richness of the several taxa, results in a recovery of the natural soil suppression against soilborne pathogens and the induction of plant resistance against airborne pathogens like viruses. However, the effects on crop production, soil fertility and disease suppression varied depending on quality, amount and frequency of application of organic matter. Therefore, future studies that include different combinations of organic amendment types and application frequencies, as well as different soil types, crop species and pathosystems, are needed to better understand the role of organic matter as a means to recover of soils affected by soil sickness

    Climate, soil management, and cultivar affect Fusarium head blight incidence and deoxynivalenol accumulation in durum wheat of Southern Italy

    Get PDF
    Fusarium head blight (FHB) is a multifaceted disease caused by some species of Fusarium spp. A huge production of mycotoxins, mostly trichothecenes, often accompanied this disease. Amongst these toxic compounds, deoxynivalenol (DON) and its derivatives represent a major issue for human as well as for animal health and farming. Common and durum wheat are amongst the hosts of trichothecene-producing Fusaria. Differences in susceptibility to fungal infection and toxin accumulation occur in wheat cultivars. Recently, increasing incidence and severity of Fusarium infection and a higher DON accumulation in durum wheat were observed in Italy, especially in Northern regions. In this study, we analyzed wheat yield, technological parameters, the incidence of Fusarium infection and DON content in kernel samples of durum wheat coming from three locations of Southern Italy with different climatic conditions and grown during two seasons, with two methods of cultivation. Four different durum wheat cultivars prevalently cultivated in Southern Italian areas were chosen for this study. Our analysis showed the effects of environment and cultivar types on wheat productivity and key technological parameters for the quality level of the end-product, namely pasta. Notably, although a low rate of mycotoxin contamination in all study sites was assessed, an inverse relation emerged between fungal infection/DON production and durum wheat yield. Further, our study pinpoints the importance of environment conditions on several quality traits of durum wheat grown under Mediterranean climate. The environmental conditions at local level (microscale) and soil management practices may drive FHB outbreak and mycotoxin contamination even in growing area suitable for cropping this wheat species

    Linking bacterial and eukaryotic microbiota to litter chemistry: Combining next generation sequencing with 13 C CPMAS NMR spectroscopy

    Get PDF
    Microbial succession over decomposing litter is controlled by biotic interactions, dispersal limitation, grazing pressure, and substrate chemical changes. Recent evidence suggests that the changes in litter chemistry and microbiome during decomposition are interdependent. However, most previous studies separately addressed the microbial successional dynamics or the molecular changes of decomposing litter. Here, we combined litter chemical characterization by 13 C NMR spectroscopy with next generation sequencing to compare leaf litter chemistry and microbiome dynamics using 30 litter types, either fresh or decomposed for 30 and 180 days. We observed a decrease of cellulose and C/N ratio during decomposition, while lignin content and lignin/N ratio showed the opposite pattern. 13 C NMR revealed significant chemical changes as microbial decomposition was proceeding, with a decrease in O-alkyl C and an increase in alkyl C and methoxyl C relative abundances. Overall, bacterial and eukaryotic taxonomical richness increased with litter age. Among Bacteria, Proteobacteria dominated all undecomposed litters but this group was progressively replaced by members of Actinobacteria, Bacteroidetes, and Firmicutes. Nitrogen-fixing genera such as Beijerinckia and Rhizobium occurred both in undecomposed as well as in aged litters. Among Eukarya, fungi belonging to the Ascomycota phylum were dominant in undecomposed litter with the typical phyllospheric genus Aureobasidium. In aged litters, phyllospheric species were replaced by zygomycetes and other ascomycetous and basidiomycetous fungi. Our analysis of decomposing litter highlighted an unprecedented, widespread occurrence of protists belonging to the Amebozoa and Cercozoa. Correlation network analysis showed that microbial communities are non-randomly structured, showing strikingly distinct composition in relation to litter chemistry. Our data demonstrate that the importance of litter chemistry in shaping microbial community structure increased during the decomposition process, being of little importance for freshly fallen leaves

    Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines

    Get PDF
    Abstract Background Fagus sylvatica forms the treeline across the Apennines mountain range, with an average elevation of 1589 m a.s.l. Previous studies evidenced that the current position of the treeline in the Apennines is heavily depressed as a result of a complex interaction between climatic factors and the past human pressure. In this study we correlated treeline elevation in the fifteen major mountain groups in the Apennines with selected climatic, geomorphological, and human disturbance variables in order to investigate in detail the site-specific features affecting the current treeline distribution. Results Treeline elevation was lowest in the North Italy (Apuan Alps), while the highest treeline was found in Central Italy (Simbruini). An absolute maximum treeline elevation of F. sylvatica exceeding 2000 m a.s.l. was found on 13 mountain peaks in Central and Southern Italy. Noteworthy, treeline elevation was largely lower on warmer south-facing slopes compared to northern slopes, with values several hundred meters lower in the Gran Sasso and Velino-Sirente. Although the causes of this pattern are still unknown, we argue that treeline elevation on south-facing slopes may be limited by the combination of climatic constraints (i.e. summer drought) and human disturbance. Evidence of a pervasive anthropogenic effect depressing treeline elevation was found in the North (Apuan Alps) Central (Gran Sasso, Velino-Sirente, Sibillini) and Southern part of Apennines (Pollino). By contrast, treeline elevation of the Laga, Simbruini, and Orsomarso mountain groups appears less affected by past anthropogenic disturbance. Finally, we recorded in the several mountain groups (i.e. Majella, Marsicani and Pollino) the coexistence of very depressed treelines just a few kilometers away from much higher treelines, among the highest ever recorded for F. sylvatica. Conclusions Finally, we argue that F. sylvatica treeline across the Apennines is locally shaped both by the interaction of low temperatures experienced by the species in its earliest life stages in snow-free open spaces with summer soil water depletion and human disturbance

    Faster N release, but not C loss, from leaf litter of invasives compared to native species in mediterranean ecosystems

    Get PDF
    Plant invasions can have relevant impacts on biogeochemical cycles, whose extent, in Mediterranean ecosystems, have not yet been systematically assessed comparing litter carbon (C) and nitrogen (N) dynamics between invasive plants and native communities. We carried out a 1-year litterbag experiment in 4 different plant communities (grassland, sand dune, riparian and mixed forests) on 8 invasives and 24 autochthonous plant species, used as control. Plant litter was characterized for mass loss, N release, proximate lignin and litter chemistry by 13C CPMAS NMR. Native and invasive species showed significant differences in litter chemical traits, with invaders generally showing higher N concentration and lower lignin/N ratio. Mass loss data revealed no consistent differences between native and invasive species, although some woody and vine invaders showed exceptionally high decomposition rate. In contrast, N release rate from litter was faster for invasive plants compared to native species. N concentration, lignin content and relative abundance of methoxyl and N-alkyl C region from 13C CPMAS NMR spectra were the parameters that better explained mass loss and N mineralization rates. Our findings demonstrate that during litter decomposition invasive species litter has no different decomposition rates but greater N release rate compared to natives. Accordingly, invasives are expected to affect N cycle in Mediterranean plant communities, possibly promoting a shift of plant assemblages

    Different pathways but same result? Comparing chemistry and biological effects of burned and decomposed litter

    Get PDF
    Litter burning and biological decomposition are oxidative processes co-occurring in many terrestrial ecosystems, producing organic matter with different chemical properties and differently affecting plant growth and soil microbial activity. Here, we tested the chemical convergence hypothesis (i.e. materials with different initial chemistry tend to converge towards a common profile, with similar biological effects, as the oxidative process advances) for burning and decomposition. We compared the molecular composition of 63 organic materials - 7 litter types either fresh, decomposed for 30, 90, 180 days, or heated at 100, 200, 300, 400, 500 \ub0C - as assessed by 13C NMR. We used litter water extracts (5% dw) as treatments in bioassays on plant (Lepidium sativum) and fungal (Aspergillus niger) growth, and a washed quartz sand amended with litter materials (0.5 % dw) to assess heterotrophic respiration by CO2 flux chamber. We observed different molecular variations for materials either burning (i.e. a sharp increase of aromatic C and a decrease of most other fractions above 200 \ub0C) or decomposing (i.e. early increase of alkyl, methoxyl and N-alkyl C and decrease of O-alkyl and di-O-alkyl C fractions). Soil respiration and fungal growth progressively decreased with litter age and temperature. Plant growth underwent an inhibitory effect by untreated litter, more and less rapidly released over decomposing and burning materials, respectively. Correlation analysis between NMR and bioassay data showed that opposite responses for soil respiration and fungi, compared to plants, are related to essentially the same C molecular types. Our findings suggest a functional convergence of decomposed and burnt organic substrates, emerging from the balance between the bioavailability of labile C sources and the presence of recalcitrant and pyrogenic compounds, oppositely affecting different trophic levels

    Windstorm disturbance triggers multiple species invasion in an urban Mediterranean forest

    Get PDF
    Plant invasion in forest ecosystems is a serious ecological and economic issue, deserving attention by researchers, managers and policy-makers worldwide. Many invasive plants have been reported as early successional species able to colonize disturbed areas following abrupt changes in microhabitat and resource availability. We investigated disturbance effects of a severe windstorm generated by a wet microburst (hail and rain at 160 mm h-1) remarkably affecting the canopy cover of an old-growth Quercus ilex urban forest in Southern Italy. This stand-replacing disturbance produced a mosaic of 103 gaps, 5.6 to 1632 m2 in size, over an area of 1.53 ha, uprooting 76% of the trees and decreasing thereby 85% of the standing above-ground dry biomass into the gaps. By intensive monitoring we compared above- and below-ground microclimate, soil moisture and mineral N availability in paired disturbed and control areas of the study forest. Within newly formed gaps we observed a seasonally consistent 70% higher content of nitrate nitrogen, 29% and 47% decreases of ammonia nitrogen in summer and autumn, respectively, and a higher moisture in topsoil, in addition to different above- and below-ground microclimatic conditions, with canopy cover mitigating extreme temperatures. One year after the windstorm, the microhabitat shift promoted the establishment in gaps of 15 native and 10 alien taxa previously absent in both disturbed and control plots. In such conditions, the rarefaction of the dominant Q. ilex canopy cover and the occurrence of empty niches prone to invasion could dramatically affect the local community structure and diversity. Our data indicate that stand-replacing windstorm can transiently transform the studied urban evergreen forest to an early allogenic successional community dominated, in the medium and large gaps, by annual and perennial non-native species. This is particularly relevant under a perspective of possible increasing frequency of windstorm events in the Mediterranean region in the near future

    The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Get PDF
    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR
    • …
    corecore