7 research outputs found

    Structure of Thin Irreducible Modules of a Q-polynomial Distance-Regular Graph

    Get PDF
    Let Gamma be a Q-polynomial distance-regular graph with vertex set X, diameter D geq 3 and adjacency matrix A. Fix x in X and let A*=A*(x) be the corresponding dual adjacency matrix. Recall that the Terwilliger algebra T=T(x) is the subalgebra of Mat_X(C) generated by A and A*. Let W denote a thin irreducible T-module. It is known that the action of A and A* on W induces a linear algebraic object known as a Leonard pair. Over the past decade, many results have been obtained concerning Leonard pairs. In this paper, these results will be applied to obtain a detailed description of W. In particular, we give a description of W in terms of its intersection numbers, dual intersection numbers and parameter array. Finally, we apply our results to the case in which Gamma has q-Racah type or classical parameters

    Nonexistence of exceptional imprimitive Q-polynomial association schemes with six classes

    Full text link
    Suzuki (1998) showed that an imprimitive Q-polynomial association scheme with first multiplicity at least three is either Q-bipartite, Q-antipodal, or with four or six classes. The exceptional case with four classes has recently been ruled out by Cerzo and Suzuki (2009). In this paper, we show the nonexistence of the last case with six classes. Hence Suzuki's theorem now exactly mirrors its well-known counterpart for imprimitive distance-regular graphs.Comment: 7 page

    Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems

    Get PDF
    Inspired by some intriguing examples, we study uniform association schemes and uniform coherent configurations, including cometric Q-antipodal association schemes. After a review of imprimitivity, we show that an imprimitive association scheme is uniform if and only if it is dismantlable, and we cast these schemes in the broader context of certain --- uniform --- coherent configurations. We also give a third characterization of uniform schemes in terms of the Krein parameters, and derive information on the primitive idempotents of such a scheme. In the second half of the paper, we apply these results to cometric association schemes. We show that each such scheme is uniform if and only if it is Q-antipodal, and derive results on the parameters of the subschemes and dismantled schemes of cometric Q-antipodal schemes. We revisit the correspondence between uniform indecomposable three-class schemes and linked systems of symmetric designs, and show that these are cometric Q-antipodal. We obtain a characterization of cometric Q-antipodal four-class schemes in terms of only a few parameters, and show that any strongly regular graph with a ("non-exceptional") strongly regular decomposition gives rise to such a scheme. Hemisystems in generalized quadrangles provide interesting examples of such decompositions. We finish with a short discussion of five-class schemes as well as a list of all feasible parameter sets for cometric Q-antipodal four-class schemes with at most six fibres and fibre size at most 2000, and describe the known examples. Most of these examples are related to groups, codes, and geometries.Comment: 42 pages, 1 figure, 1 table. Published version, minor revisions, April 201

    Non-existence of imprimitive <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>Q</mml:mi></mml:math>-polynomial schemes of exceptional type with <mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:math>

    No full text
    corecore