5 research outputs found

    A linear profit function for economic weights of linear phenotypic selection indices in plant breeding

    Get PDF
    The profit function (net returns minus costs) allows breeders to derive trait economic weights to predict the net genetic merit (H) using the linear phenotypic selection index (LPSI). Economic weight is the increase in profit achieved by improving a particular trait by one unit and should reflect the market situation and not only preferences or arbitrary values. In maize (Zea mays L.) and wheat (Triticum aestivum) breeding programs, only grain yield has a specific market price, which makes application of a profit function difficult. Assuming the traits’ phenotypic values have multivariate normal distribution, we used the market price of grain yield and its conditional expectation given all the traits of interest to construct a profit function and derive trait economic weights in maize and wheat breeding. Using simulated and real maize and wheat datasets, we validated the profit function by comparing its results with the results obtained from a set of economic weights from the literature. The criteria to validate the function were the estimated values of the LPSI selection response and the correlation between LPSI and H. For our approach, the maize and wheat selection responses were 1,567.13 and 1,291.5, whereas the correlations were .87 and .85, respectively. For the other economic weights, the selection responses were 0.79 and 2.67, whereas the correlations were .58 and .82, respectively. The simulated dataset results were similar. Thus, the profit function is a good option to assign economic weights in plant breeding

    A Genomic Selection Index Applied to Simulated and Real Data

    Get PDF
    A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors have proposed a GSI; however, they have not used simulated or real data to validate the GSI theory and have not explained how to estimate the GSI selection response and the GSI expected genetic gain per selection cycle for the unobserved traits after the first selection cycle to obtain information about the genetic gains in each subsequent selection cycle. In this paper, we develop the theory of a GSI and apply it to two simulated and four real data sets with four traits. Also, we numerically compare its efficiency with that of the phenotypic selection index (PSI) by using the ratio of the GSI response over the PSI response, and the PSI and GSI expected genetic gain per selection cycle for observed and unobserved traits, respectively. In addition, we used the Technow inequality to compare GSI vs. PSI efficiency. Results from the simulated data were confirmed by the real data, indicating that GSI was more efficient than PSI per unit of time

    Application of a Genomics Selection Index to Real and Simulated Data

    No full text
    We apply a Genomic Selection Index (GSI) to simulated and real data sets with four traits and numerically we compared its efficiency with that of the phenotypic selection index (PSI) using the ratio of the GSI response over the PSI response. In addition, we used two additional criteria to compare the GSI vs PSI efficiency: the ratio of the average of the top 10% of the predicted values of the net genetic merit from one to the next selection cycle for PSI and GSI and the Technow inequality. Results from the simulated data were confirmed by the real data, indicating that GSI was more efficient than PSI in terms of time and that the means of the top 10% of the net genetic merit predicted by GSI were higher than that predicted by PSI. Thus, we concluded that the proposed GSI is an efficient choice when the purpose of a breeding program is to select genotypes using genomic selection

    Empowering Latina scientists

    No full text

    Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study

    No full text
    Background: Surgical strategies are being adapted to face the COVID-19 pandemic. Recommendations on the management of acute appendicitis have been based on expert opinion, but very little evidence is available. This study addressed that dearth with a snapshot of worldwide approaches to appendicitis. Methods: The Association of Italian Surgeons in Europe designed an online survey to assess the current attitude of surgeons globally regarding the management of patients with acute appendicitis during the pandemic. Questions were divided into baseline information, hospital organization and screening, personal protective equipment, management and surgical approach, and patient presentation before versus during the pandemic. Results: Of 744 answers, 709 (from 66 countries) were complete and were included in the analysis. Most hospitals were treating both patients with and those without COVID. There was variation in screening indications and modality used, with chest X-ray plus molecular testing (PCR) being the commonest (19\ub78 per cent). Conservative management of complicated and uncomplicated appendicitis was used by 6\ub76 and 2\ub74 per cent respectively before, but 23\ub77 and 5\ub73 per cent, during the pandemic (both P < 0\ub7001). One-third changed their approach from laparoscopic to open surgery owing to the popular (but evidence-lacking) advice from expert groups during the initial phase of the pandemic. No agreement on how to filter surgical smoke plume during laparoscopy was identified. There was an overall reduction in the number of patients admitted with appendicitis and one-third felt that patients who did present had more severe appendicitis than they usually observe. Conclusion: Conservative management of mild appendicitis has been possible during the pandemic. The fact that some surgeons switched to open appendicectomy may reflect the poor guidelines that emanated in the early phase of SARS-CoV-2
    corecore