159 research outputs found

    Predicting species abundance by implementing the ecological niche theory

    Get PDF
    Species are not uniformly distributed across the landscape. For every species, there should be few favoured sites where abundance is high and many other sites of lower suitability where abundance is low. Consequently, local abundance could be thought of as a natural expression of species response to local conditions. The correlation between abundance and environmental suitability has been well documented, and a recent meta-analysis has suggested that this relationship could be a generality. Despite the importance and potential implication of the abundance–suitability relationship, its predictive power for meaningful extrapolations has been surprisingly poorly explored. In this study, we showed how a highly predictable trend can be extracted from the abundance–suitability relationship, accurately predicting the variation in species abundance at a high spatial resolution. We produced high-quality environmental suitability estimations for 50 endemic species in the Australian Wet Tropics. Environmental suitability derived from species distribution models was related to observed abundance estimated using data from 29 years of uninterrupted monitoring effort. We used the fitted relationship to accurately predict abundance at a fine scale across the species range. Our results showed that the abundance–suitability relationship was strong for endemic species in the Australian Wet Tropics. The predictive power of our models was high, explaining, on average, 55% of the deviance across taxa. Despite interspecific variation in the strength of the abundance–suitability relationship associated with potential intrinsic estimation biases, our approach provides a powerful tool for predicting abundance across the species range at a fine scale. The potential for robust abundance predictions from occurrence-based species distribution models shown in this study are numerous, and it could have a significant impact in enhancing species conservation and management decisions

    Predicted alteration of vertebrate communities in response to climate-induced elevational shifts

    Get PDF
    Aim: Climate change is driving species to migrate to novel areas as current environments become unsuitable. As a result, species distributions have shifted uphill in montane ecosystems globally. Heterogeneous dispersal rates among shifting species could result in complex changes to community assemblages. For example, interspecific differences in dispersal ability could lead to the disruption, or creation, of species interactions and processes within communities, likely amplifying the impact of climate change on ecosystems. Here, we studied the dispersal success of vertebrate species in a tropical montane ecosystem under a climate-induced uphill shift and assessed the derived impacts on community structures. Location: The Australian Wet Tropics bioregion. Method: We simulated the uphill shift of 7613 community assemblages across the elevational gradient using thermal resistance layers for movement analyses. Dispersal success was calculated as the probability of shifting given species’ dispersal ability and landscape composition. We then used dissimilarity indices to measure the potential changes in community structures resulting from the heterogeneous dispersal success among migrating species. Results: Dispersal success was strongly influenced by species’ dispersal ability, landscape composition and climate change. The heterogeneous dispersal success among migrating species induced marked temporal changes between community assemblages along the elevational gradient. The local extinction rate (i.e. the proportion of species unable to shift) was especially remarkable at high elevations, suggesting potential mass local extinctions of upland species. Furthermore, the increasing local extinction rate with elevation resulted in substantial declines in species co-occurrence in high-altitude ecosystems. Main conclusions: Our study highlights the escalating impact of climate change on community assemblages in response to climate-induced elevational shifts, providing a classic example of the "escalator to extinction." Future predictions of the impacts of climate change on ecosystems will benefit from improvements in understanding species interactions, population dynamics and species potential to adapt to a changing environment

    Divergent Biochemical Fractionation, Not Convergent Temperature, Explains Cellulose Oxygen Isotope Enrichment across Latitudes

    Get PDF
    Recent findings based on the oxygen isotope ratios of tree trunk cellulose indicate that the temperature of biomass production in biomes ranging from boreal to subtropical forests converge to an average leaf temperature of 21.4°C. The above conclusion has been drawn under the assumption that biochemically related isotopic fractionations during cellulose synthesis are not affected by temperature. Here we test the above assumption by heterotrophically generating cellulose at different temperatures and measuring the proportion of carbohydrate oxygen that exchange with water during cellulose synthesis and the average biochemical fractionation associated with this exchange. We observed no variation in the proportion of oxygen that exchange with different temperatures, which averaged 0.42 as it has been observed in other studies. On the other hand, the biochemical oxygen isotope fractionation during cellulose synthesis is affected by temperature and can be described by a 2nd order polynomial equation. The biochemical fractionation changes little between temperatures of 20 and 30°C averaging 26‰ but increases at lower temperatures to values of 31‰. This temperature sensitive biochemical fractionation explains the pattern of cellulose oxygen isotope ratios of aquatic plants encompassing several latitudes. The observed temperature sensitive biochemical fractionation also indicates that divergent biochemical fractionation and not convergent leaf temperature explains the increase in oxygen isotope enrichment of cellulose across several biomes

    Coordination of photosynthetic traits across soil and climate gradients

    Get PDF
    "Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients

    Fire in Australian savannas: From leaf to landscape

    Get PDF
    © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management

    Impacts of ground-level ozone on sugarcane production

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Data will be made available on request.Sugarcane is a vital commodity crop often grown in (sub)tropical regions which have been experiencing a recent deterioration in air quality. Unlike for other commodity crops, the risk of air pollution, specifically ozone (O3), to this C4 crop has not yet been quantified. Yet, recent work has highlighted both the potential risks of O3 to C4 bioenergy crops, and the emergence of O3 exposure across the tropics as a vital factor determining global food security. Given the large extent, and planned expansion of sugarcane production in places like Brazil to meet global demand for biofuels, there is a pressing need to characterize the risk of O3 to the industry. In this study, we sought to a) derive sugarcane O3 dose-response functions across a range of realistic O3 exposure and b) model the implications of this across a globally important production area. We found a significant impact of O3 on biomass allocation (especially to leaves) and production across a range of sugarcane genotypes, including two commercially relevant varieties (e.g. CTC4, Q240). Using these data, we calculated dose-response functions for sugarcane and combined them with hourly O3 exposure across south-central Brazil derived from the UK Earth System Model (UKESM1) to simulate the current regional impact of O3 on sugarcane production using a dynamic global vegetation model (JULES vn 5.6). We found that between 5.6 % and 18.3 % of total crop productivity is likely lost across the region due to the direct impacts of current O3 exposure. However, impacts depended critically on the substantial differences in O3 susceptibility observed among sugarcane genotypes and how these were implemented in the model. Our work highlights not only the urgent need to fully elucidate the impacts of O3 in this important bioenergetic crop, but the potential implications air quality may have upon tropical food production more generally.Natural Environment Research Council (NERC)FAPESPCNRMet Office Hadley Centre Climate ProgrammeMet Offic

    Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability: All data are available from the Terrestrial Ecosystem Research Network (TERN) Data Portal: https://portal.tern.org.au/metadata/TERN/db33762b-1199-4dbd-b151-b6ce8d5ad042. doi: https://doi.org/10.25901/86yk-5m77.Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.Australian Research Council (ARC)Catalan science and technology grant, Beatriu de Pinó

    Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data

    Get PDF
    Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem responses to environmental changes without capturing the high diversity of plant functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances. Innovative methods and data products are needed to track changes in functional trait composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and soil information. Image textural parameters were found to be key components of remote sensing information for predicting functional traits across tropical forests and woody savannas. Leaf thickness (R2 = 0.52) obtained the highest prediction accuracy among the morphological and structural traits and leaf carbon content (R2 = 0.70) and maximum rates of photosynthesis (R2 = 0.67) obtained the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to morphological and structural traits. Our approach offers new opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most species-rich ecosystems on Earth

    Optimal stomatal behaviour around the world

    Full text link
    © 2015 Macmillan Publishers Limited. All rights reserved. Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate

    Effects of two contrasting canopy manipulations on growth and water use of London plane (Platanus x acerifolia) trees

    Get PDF
    Aims: Two contrasting canopy manipulations were compared to unpruned controls on London plane trees, to determine the effects on canopy regrowth, soil and leaf water relations. Methods: ‘Canopy reduction’, was achieved by removing the outer 30 % length of all major branches and ‘canopy thinning’, by removing 30 % of lateral branches arising from major branches. Results: Total canopy leaf areas recovered within two and three years of pruning for the canopy-thinned and reduced trees respectively. Canopy reduction increased mean leaf size, nitrogen concentration, canopy leaf area density and conserved soil moisture for up to 3 years, whereas canopy thinning had no effects. Another experiment compared more severe canopy reduction to unpruned trees. This produced a similar growth response to the previous experiment, but soil moisture was conserved nearer to the trunk. Analysis of 13C and 18O signals along with leaf water relations and soil moisture data suggested that lower boundary layer conductance within the canopy-reduced trees restricted tree water use, whereas for the canopy-thinned trees the opposite occurred. Conclusions: Only canopy reduction conserved soil moisture and this was due to a combination of reduced total canopy leaf area and structural changes in canopy architecture
    • …
    corecore