2,494 research outputs found

    The optimal P3M algorithm for computing electrostatic energies in periodic systems

    Full text link
    We optimize Hockney and Eastwood's Particle-Particle Particle-Mesh (P3M) algorithm to achieve maximal accuracy in the electrostatic energies (instead of forces) in 3D periodic charged systems. To this end we construct an optimal influence function that minimizes the RMS errors in the energies. As a by-product we derive a new real-space cut-off correction term, give a transparent derivation of the systematic errors in terms of Madelung energies, and provide an accurate analytical estimate for the RMS error of the energies. This error estimate is a useful indicator of the accuracy of the computed energies, and allows an easy and precise determination of the optimal values of the various parameters in the algorithm (Ewald splitting parameter, mesh size and charge assignment order).Comment: 31 pages, 3 figure

    Capillary deformations of bendable films

    Get PDF
    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding establishes a new type of “soft capillarity” that stems from the bendability of thin elastic bodies rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle noticed in several previous attempts to model “drop-on-a-floating-sheet” experiments, and enabling a reliable usage of this setup for the metrology of ultrathin films

    Phenotype standardization for drug-induced kidney disease.

    Get PDF
    Drug-induced kidney disease is a frequent cause of renal dysfunction; however, there are no standards to identify and characterize the spectrum of these disorders. We convened a panel of international, adult and pediatric, nephrologists and pharmacists to develop standardized phenotypes for drug-induced kidney disease as part of the phenotype standardization project initiated by the International Serious Adverse Events Consortium. We propose four phenotypes of drug-induced kidney disease based on clinical presentation: acute kidney injury, glomerular, tubular, and nephrolithiasis, along with the primary and secondary clinical criteria to support the phenotype definition, and a time course based on the KDIGO/AKIN definitions of acute kidney injury, acute kidney disease, and chronic kidney disease. Establishing causality in drug-induced kidney disease is challenging and requires knowledge of the biological plausibility for the specific drug, mechanism of injury, time course, and assessment of competing risk factors. These phenotypes provide a consistent framework for clinicians, investigators, industry, and regulatory agencies to evaluate drug nephrotoxicity across various settings. We believe that this is the first step to recognizing drug-induced kidney disease and developing strategies to prevent and manage this condition

    Measuring Dislocation Density in Aluminum with Resonant Ultrasound Spectroscopy

    Full text link
    Dislocations in a material will, when present in enough numbers, change the speed of propagation of elastic waves. Consequently, two material samples, differing only in dislocation density, will have different elastic constants, a quantity that can be measured using Resonant Ultrasound Spectroscopy. Measurements of this effect on aluminum samples are reported. They compare well with the predictions of the theory.Comment: 4 pages, 2 figure

    Dynamics for variable length multisection continuum arms

    Get PDF
    Variable length multisection continuum arms are a class of continuum robotic manipulators that generate motion by structural mechanical deformation. Unlike most continuum robots, the sections of these arms do not have (central) supporting flexible backbone, and are actuated by multiple variable length actuators. Because of the constraining nature of actuators, the continuum sections can bend and/or elongate (compress) depending on the elongation/contraction characteristics of the actuators being used. Continuum arms have a number of distinctive differences with respect to traditional rigid arms namely: smooth bending, high inherent compliance, and adaptive whole arm grasping. However, due to numerical instability and the complexity of curve parametric models, there are no spatial dynamic models for multisection continuum arms. This paper introduces novel spatial dynamics and applies these to variable length multisection continuum arms with any number of sections. An efficient recursive computational scheme for deriving the equations of motion is presented. This is applied in a general form based on structurally accurate and numerically well-posed modal kinematics that assumes circular arc deformation of continuum sections without torsion. It is shown that the proposed modal dynamics are highly scalable, producing efficient and accurate numerical results. The spatial dynamic simulation results are experimentally validated using a pneumatic muscle actuated multisection prototype continuum arm. For the first time this enables investigation of spatial dynamic effects in this class of continuum arms

    Anomalous strength of membranes with elastic ridges

    Full text link
    We report on a simulational study of the compression and buckling of elastic ridges formed by joining the boundary of a flat sheet to itself. Such ridges store energy anomalously: their resting energy scales as the linear size of the sheet to the 1/3 power. We find that the energy required to buckle such a ridge is a fixed multiple of the resting energy. Thus thin sheets with elastic ridges such as crumpled sheets are qualitatively stronger than smoothly bent sheets.Comment: 4 pages, REVTEX, 3 figure

    Strain-induced Evolution of Electronic Band Structures in a Twisted Graphene Bilayer

    Full text link
    Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature. The strain and curvature strongly affect the local band structures of the twisted graphene bilayer; the energy difference of the two low-energy van Hove singularities decreases with increasing the lattice deformations and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive Dirac fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap, i.e., the eight-fold degenerate Landau level at the charge neutrality point is splitted into two four-fold degenerate quartets polarized on each layer. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.Comment: 4 figure
    corecore