16 research outputs found

    Comparison of chemical-activated luciferase gene expression bioassay and gas chromatography for PCB determination in human serum and follicular fluid.

    Get PDF
    We assessed exposure to dioxin-like compounds using chemical and bioassay analysis in different matrices in a female population. A total of 106 serum and 9 follicular fluid samples were collected from infertile women attending Centers for Reproductive Medicine in Belgium from 1996 to 1998. Major polychlorinated biphenyl (PCB) congeners were quantified by chemical analysis using gas chromatography with electron-capture detection, and the chemical-activated luciferase gene expression (CALUX) bioassay was used to determine the total dioxin-like toxic equivalence (TEQ) of mixtures of polyhalogenated aromatic hydrocarbons present in body fluids, such as serum and follicular fluid. To the best of our knowledge, this is the first investigation to determine TEQ values by the CALUX bioassay in follicular fluid. The TEQ levels in both matrices are well correlated (r = 0.83, p = 0.02). As the chemical and bioassay analysis executed in this study do not cover the same span of polyhalogenated aromatic hydrocarbons, we did not expect totally correlated results. Moreover, the sample workup and quantification of the analytes differed completely. Nonetheless, the TEQ values in human extracts correlated well with the sum of four major PCB congeners chemically determined in both serum and follicular fluid. These results indicate that the CALUX bioassay may serve as a simple, relatively inexpensive prescreening tool for exposure assessment in epidemiologic surveys

    Effect-Directed Analysis of Municipal Landfill Soil Reveals Novel Developmental Toxicants in the Zebrafish Danio rerio

    Get PDF
    Effect-directed analysis (EDA) is an approach used to identify (unknown) contaminants in complex samples which cause toxicity, using a combination of biology and chemistry. The goal of this work was to apply EDA to identify developmental toxicants in soil samples collected from a former municipal landfill site. Soil samples were extracted, fractionated, and tested for developmental effects with an embryotoxicity assay in the zebrafish Danio rerio. Gas chromatograph mass selective detection (GC-MSD) chemical screening was used to reveal candidate developmental toxicants in fractions showing effects. In a parallel study, liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry was also applied to one polar subfraction (Hoogenboom et al. J. Chromatogr. A2009, 1216, 510-519). EDA resulted in the identification of a number of previously unknown developmental toxicants, which were confirmed to be present in soil by GC-MS. These included 11H-benzo[b]fluorene, 9-methylacridine, 4-azapyrene, and 2-phenylquinoline, as well as one known developmental toxicant (retene). This work revealed the presence of novel contaminants in the environment that may affect vertebrate development, which are not subject to monitoring or regulation under current soil quality assessment guidelines. © 2011 American Chemical Society

    Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project

    Get PDF
    The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation

    Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals—The ATHENA Project

    Get PDF
    Copyright © 2020 by the authors. The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.EU Horizon 2020 programme, grant number 82516
    corecore