33 research outputs found

    Comparative study of gp130 cytokine effects on corticotroph AtT-20 cells - Redundancy or specificity of neuroimmunoendocrine modulators?

    Get PDF
    Objective: This comparative in vitro study examined the effects of all known gp130 cytokines on murine corticotroph AtT-20 cell function. Methods: Cytokines were tested at equimolar concentrations from 0.078 to 10 nM. Tyrosine phosphorylation of the signal transducer and activator of transcription ( STAT) 3 and STAT1, the STAT-dependent suppressor of cytokine signaling (SOCS)-3 promoter activity, SOCS-3 gene expression, STAT-dependent POMC promoter activity and adrenocorticotropic hormone ( ACTH) secretion were determined. Results: Leukemia inhibitory factor (LIF), human oncostatin M (OSM) and cardiotrophin (CT)-1 (LIFR/gp130 ligands), as well as ciliary neurotrophic factor ( CNTF) and novel neurotrophin1/B-cell stimulating factor-3 (CNTFRalpha/LIFR/gp130 ligands) are potent stimuli of corticotroph cells in vitro. In comparison, interleukin (IL)-6 (IL-6R/gp130 ligand) and IL-11 (IL-11R/gp130 ligand) exhibited only modest direct effects on corticotrophs, while murine OSM (OSMR/gp130 ligand) showed no effect. Conclusion: (i) CNTFR complex ligands are potent stimuli of corticotroph function, comparable to LIFR complex ligands; (ii) IL-6 and IL-11 are relatively weak direct stimuli of corticotroph function; (iii) differential effects of human and murine OSM suggest that LIFR/gp130 (OSMR type I) but not OSMR/gp130 (OSMR type II) are involved in corticotroph signaling. (iv) CT-1 has the hitherto unknown ability to stimulate corticotroph function, and (v) despite redundant immuno-neuroendocrine effects of different gp130 cytokines, corticotroph cells are preferably activated through the LIFR and CNTFR complexes. Copyright (C) 2004 S. Karger AG, Basel

    Assessing the reliability of species distribution projections in climate change research

    Get PDF
    Aim: Forecasting changes in species distribution under future scenarios is one of the most prolific areas of application for species distribution models (SDMs). However, no consensus yet exists on the reliability of such models for drawing conclusions on species’ distribution response to changing climate. In this study, we provide an overview of common modelling practices in the field and assess the reliability of model predictions using a virtual species approach. Location: Global. Methods: We first review papers published between 2015 and 2019. Then, we use a virtual species approach and three commonly applied SDM algorithms (GLM, MaxEnt and random forest) to assess the estimated and actual predictive performance of models parameterized with different modelling settings and violations of modelling assumptions. Results: Most SDM papers relied on single models (65%) and small samples (N < 50, 62%), used presence-only data (85%), binarized models' output (74%) and used a split-sample validation (94%). Our simulation reveals that the split-sample validation tends to be over-optimistic compared to the real performance, whereas spatial block validation provides a more honest estimate, except when datasets are environmentally biased. The binarization of predicted probabilities of presence reduces models’ predictive ability considerably. Sample size is one of the main predictors of the real model accuracy, but has little influence on estimated accuracy. Finally, the inclusion of ecologically irrelevant predictors and the violation of modelling assumptions increases estimated accuracy but decreases real accuracy of model projections, leading to biased estimates of range contraction and expansion. Main conclusions: Our ability to predict future species distribution is low on average, particularly when models’ predictions are binarized. A robust validation by spatially independent samples is required, but does not rule out inflation of model accuracy by assumption violation. Our findings call for caution in the application and interpretation of SDM projections under different climates

    Applying habitat and population-density models to land-cover time series to inform IUCN Red List assessments

    Get PDF
    The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∌15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment

    Large carnivore expansion in Europe is associated with human population density and land cover changes

    Get PDF
    Aim: The recent recovery of large carnivores in Europe has been explained as resulting from a decrease in human persecution driven by widespread rural land abandonment, paralleled by forest cover increase and the consequent increase in availability of shelter and prey. We investigated whether land cover and human population density changes are related to the relative probability of occurrence of three European large carnivores: the grey wolf (Canis lupus), the Eurasian lynx (Lynx lynx) and the brown bear (Ursus arctos). Location: Europe, west of 64° longitude. Methods: We fitted multi-temporal species distribution models using >50,000 occurrence points with time series of land cover, landscape configuration, protected areas, hunting regulations and human population density covering a 24-year period (1992–2015). Within the temporal window considered, we then predicted changes in habitat suitability for large carnivores throughout Europe. Results: Between 1992 and 2015, the habitat suitability for the three species increased in Eastern Europe, the Balkans, North-West Iberian Peninsula and Northern Scandinavia, but showed mixed trends in Western and Southern Europe. These trends were primarily associated with increases in forest cover and decreases in human population density, and, additionally, with decreases in the cover of mosaics of cropland and natural vegetation. Main conclusions: Recent land cover and human population changes appear to have altered the habitat suitability pattern for large carnivores in Europe, whereas protection level did not play a role. While projected changes largely match the observed recovery of large carnivore populations, we found mismatches with the recent expansion of wolves in Central and Southern Europe, where factors not included in our models may have played a dominant role. This suggests that large carnivores’ co-existence with humans in European landscapes is not limited by habitat availability, but other factors such as favourable human tolerance and policy

    Meeting of the Ecosystem Approach Correspondence Group on on Pollution Monitoring (CorMon Pollution)

    Get PDF
    In accordance with the UNEP/MAP Programme of Work adopted by COP 21 for the biennium 2020-2021, the United Nations Environment Programme/Mediterranean Action Plan-Barcelona Convention Secretariat (UNEP/MAP) and its Programme for the Assessment and Control of Marine Pollution in the Mediterranean (MED POL) organized the Meeting of the Ecosystem Approach Correspondence Group on Pollution Monitoring (CorMon on Pollution Monitoring). The Meeting was held via videoconference on 26-27 April 2021. 2. The main objectives of the Meeting were to: a) Review the Monitoring Guidelines/Protocols for IMAP Common Indicator 18, as well as the Monitoring Guidelines/Protocols for Analytical Quality Assurance and Reporting of Monitoring Data for IMAP Common Indicators 13, 14, 17, 18 and 20; b) Take stock of the state of play of inter-laboratory testing and good laboratory practice related to IMAP Ecological Objectives 5 and 9; c) Analyze the proposal for the integration and aggregation rules for IMAP Ecological Objectives 5, 9 and 10 and assessment criteria for contaminants and nutrients; d) Recommend the ways and means to strengthen implementation of IMAP Pollution Cluster towards preparation of the 2023 MED Quality Status Report

    Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter

    Get PDF
    To test the feasibility of using the survivin promoter to induce specific expression of sodium/iodide symporter (NIS) in cancer cell lines and tumors for targeted use of radionuclide therapy, a recombinant adenovirus, Ad-SUR-NIS, that expressed the NIS gene under control of the survivin promoter was constructed. Ad-SUR-NIS mediating iodide uptake and cytotoxicity was performed in vitro. Scintigraphic, biodistribution and radioiodine therapy studies were performed in vivo. PC-3 (prostate); HepG2 (hepatoma) and A375 (melanoma) cancer cells all exhibited perchlorate-sensitive iodide uptake after infection with Ad-SUR-NIS, ∌50 times higher than that of negative control Ad-CMV-GFP-infected cells. No significant iodide uptake was observed in normal human dental pulp fibroblast (DPF) cells after infection with Ad-SUR-NIS. Clonogenic assays demonstrated that Ad-SUR-NIS-infected cancer cells were selectively killed by exposure to 131I. Ad-SUR-NIS-infected tumors show significant radioiodine accumulation (13.3±2.85% ID per g at 2 h post-injection), and the effective half-life was 3.1 h. Moreover, infection with Ad-SUR-NIS in combination with 131I suppressed tumor growth. These results indicate that expression of NIS under control of the survivin promoter can likely be used to achieve cancer-specific expression of NIS in many types of cancers. In combination with radioiodine therapy, this strategy is a possible method of cancer gene therapy

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Optical Fiber Sensors 2020

    Full text link
    ISBN: 978-1-55752-307-5 A brief assessment is made of existing wireless and photonic sensor networks in buildings. It follows interests in the premium hotel sector to assess the feasibility integrating fibre optic sensors with existing fibre optic based communications

    On the importance of predictor choice, modelling technique, and number of pseudo-absences for bioclimatic envelope model performance

    No full text
    Contains fulltext : 226343.pdf (publisher's version ) (Open Access)6 november 202011 p
    corecore