1,005 research outputs found

    Team behaviour analysis in sports using the poisson equation

    Get PDF
    We propose a novel physics-based model for analysing team play- ers’ positions and movements on a sports playing field. The goal is to detect for each frame the region with the highest population of a given team’s players and the region towards which the team is moving as they press for territorial advancement, termed the region of intent. Given the positions of team players from a plan view of the playing field at any given time, we solve a particular Poisson equation to generate a smooth distribution. The proposed distribu- tion provides the likelihood of a point to be occupied by players so that more highly populated regions can be detected by appropriate thresholding. Computing the proposed distribution for each frame provides a sequence of distributions, which we process to detect the region of intent at any time during the game. Our model is evalu- ated on a field hockey dataset, and results show that the proposed approach can provide effective features that could be used to gener- ate team statistics useful for performance evaluation or broadcasting purposes

    Player detection in field sports

    Get PDF
    We describe a method for player detection in field sports with a fixed camera set-up based on a new player feature extraction strategy. The proposed method detects players in static images with a sliding window technique. First, we compute a binary edge image and then the detector window is shifted over the edge regions. Given a set of binary edges in a sliding window, we introduce and solve a particular diffusion equation to generate a shape information image. The proposed diffusion to generate a shape information image is the key stage and the main theoretical contribution in our new algorithm. It removes the appearance variations of an object while preserving the shape information. It also enables the use of polar and Fourier transforms in the next stage to achieve scale and rotation invariant feature extraction. A Support Vector Machine (SVM) classifier is used to assign either player or non-player class inside a detector window. We evaluate our approach on three different field hockey datasets. In general, results show that the proposed feature extraction is effective, and performs competitive results compared to the state-of-the-art methods

    Abnormal crowd behavior detection using novel optical flow-based features

    Get PDF
    In this paper, we propose a novel optical flow based features for abnormal crowd behaviour detection. The proposed feature is mainly based on the angle difference computed between the optical flow vectors in the current frame and in the previous frame at each pixel location. The angle difference information is also combined with the optical flow magnitude to produce new, effective and direction invariant event features. A one-class SVM is utilized to learn normal crowd behavior. If a test sample deviates significantly from the normal behavior, it is detected as abnormal crowd behavior. Although there are many optical flow based features for crowd behaviour analysis, this is the first time the angle difference between optical flow vectors in the current frame and in the previous frame is considered as a anomaly feature. Evaluations on UMN and PETS2009 datasets show that the proposed method performs competitive results compared to the state-of-the-art methods

    National cross-sectional survey of 1.14 million NHS staff SARS-CoV-2 serology tests: a comparison of NHS staff with regional community seroconversion rates

    Get PDF
    OBJECTIVES: An initial report of findings from 1.14 million SARS CoV-2 serology tests in National Health Service (NHS) staff to compare NHS staff seroconversion with community seroconversion rates at a regional level. DESIGN: A national cross-sectional survey. SETTING: A SARS-CoV-2 antibody testing programme offered across all NHS Trusts. PARTICIPANTS: 1.14 million NHS staff. INTERVENTION: SARS-CoV-2 antibody testing. PRIMARY AND SECONDARY OUTCOME MEASURES: SARS-CoV-2 antibody testing was used to estimate the seroprevalence of SARS-CoV-2 in NHS staff by region, compared with community seroprevalence as determined by the COVID-19 Infection Survey (Office for National Statistics). We also explored seroprevalence trends by regional COVID-19 activity, using regional death rates as a proxy for COVID-19 'activity'. RESULTS: 1 146 310 tests were undertaken on NHS staff between 26 May and 31 August 2020. 186 897 NHS tests were positive giving a seroconversion rate of 16.3% (95% CI 16.2% to 16.4%), in contrast to the national community seroconversion rate of 5.9% (95% CI 5.3% to 6.6%). There was significant geographical regional variation, which mirrored the trends seen in community prevalence rates. NHS staff were infected at a higher rate than the general population (OR 3.1, 95% CI 2.8 to 3.5). NHS seroconversion by regional death rate suggested a trend towards higher seroconversion rates in the areas with higher COVID-19 'activity'. CONCLUSIONS: This is the first cross-sectional survey assessing the risk of COVID-19 disease in healthcare workers at a national level. It is the largest study of its kind. It suggests that NHS staff have a significantly higher rate of COVID-19 seroconversion compared with the general population in England, with regional variation across the country which matches the background population prevalence trends. There was also a trend towards higher seroconversion rates in areas which had experienced high COVID-19 clinical activity. This work has global significance in terms of the value of such a testing programme and contributing to the understanding of healthcare worker seroconversion at a national level

    Action recognition based on sparse motion trajectories

    Get PDF
    We present a method that extracts effective features in videos for human action recognition. The proposed method analyses the 3D volumes along the sparse motion trajectories of a set of interest points from the video scene. To represent human actions, we generate a Bag-of-Features (BoF) model based on extracted features, and finally a support vector machine is used to classify human activities. Evaluation shows that the proposed features are discriminative and computationally efficient. Our method achieves state-of-the-art performance with the standard human action recognition benchmarks, namely KTH and Weizmann datasets

    An evaluation of local action descriptors for human action classification in the presence of occlusion

    Get PDF
    This paper examines the impact that the choice of local de- scriptor has on human action classifier performance in the presence of static occlusion. This question is important when applying human action classification to surveillance video that is noisy, crowded, complex and incomplete. In real-world scenarios, it is natural that a human can be occluded by an object while carrying out different actions. However, it is unclear how the performance of the proposed action descriptors are affected by the associated loss of information. In this paper, we evaluate and compare the classification performance of the state-of-art human local action descriptors in the presence of varying degrees of static occlusion. We consider four different local action descriptors: Trajectory (TRAJ), Histogram of Orientation Gradient (HOG), Histogram of Orientation Flow (HOF) and Motion Boundary Histogram (MBH). These descriptors are combined with a standard bag-of-features representation and a Support Vector Machine classifier for action recognition. We investigate the performance of these descriptors and their possible combinations with respect to varying amounts of artificial occlusion in the KTH action dataset. This preliminary investigation shows that MBH in combination with TRAJ has the best performance in the case of partial occlusion while TRAJ in combination with MBH achieves the best results in the presence of heavy occlusion

    Assembly as a noncooperative game of its pieces: the case of endogeneous disk assemblies

    Get PDF
    We propose an event-driven approach to planning and control of robot assembly problems using ideas from non-cooperative game theory. We report on the results of an extensive simulation study for a very simple two degree of freedom case - the arrangement of disks on a plane by a disk shaped robot

    EDAR - mobile robot for parts moving based on a game-theoretic approach

    Get PDF
    EDAR (event-driven assembler robot) — a mobile robot capable of moving a collection of disk-shaped parts located on a two-dimensional workspace from an arbitrary initial configuration to a desired configuration while avoiding collisions in a purely reactive manner, is presented. Since EDAR uses a higher-level scheduler to switch among the subtasks of moving individual parts, it is viewed as mediating a noncooperative game played among the parts

    Feedback-Based Event-Driven Parts Moving

    Get PDF
    A collection of unactuated disk-shaped parts must be brought by an actuated manipulator robot into a specified configuration from arbitrary initial conditions. The task is cast as a noncooperative game played among the parts—which in turn yields a feedback-based event-driven approach to plan generation and execution. The correctness of this approach, an open question, has been demonstrated in simpler settings and is further suggested by the extensive experiments reported here using an actual working implementation with EDAR—a mobile robot operating in a purely feedback-based event-driven manner. These results verify the reliability of this approach against uncertainties in sensory information and unanticipated changes in workspace configuration

    On the Coordinated Navigation of Multiple Independent Disk-Shaped Robots

    Get PDF
    This paper addresses the coordinated navigation of multiple independently actuated disk-shaped robots - all placed within the same disk-shaped workspace. Assuming perfect sensing, shared centralized communications and computation, as well as perfect actuation, we encode complete information about the goal, obstacles and workspace boundary using an artificial potential function over the cross product space of the robots’ simultaneous configurations. The closed-loop dynamics governing the motion of each robot take the form of the appropriate projection of the gradient of this function. We show, with some reasonable restrictions on the allowable goal positions, that this function is an essential navigation function - a special type of artificial potential function that is ensured of connecting the kinematic planning with the dynamic execution in a manner that guarantees collision-free navigation of each robot to its destination from almost all initial free placements. We summarize the results of an extensive simulation study investigating such practical issues as average resulting trajectory length and robustness against simulated sensor noise
    • 

    corecore