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ABSTRACT

We propose a novel physics-based model for analysing team play-
ers’ positions and movements on a sports playing field. The goal
is to detect for each frame the region with the highest population
of a given team’s players and the region towards which the team is
moving as they press for territorial advancement, termed the region
of intent. Given the positions of team players from a plan view of
the playing field at any given time, we solve a particular Poisson
equation to generate a smooth distribution. The proposed distribu-
tion provides the likelihood of a point to be occupied by players so
that more highly populated regions can be detected by appropriate
thresholding. Computing the proposed distribution for each frame
provides a sequence of distributions, which we process to detect the
region of intent at any time during the game. Our model is evalu-
ated on a field hockey dataset, and results show that the proposed
approach can provide effective features that could be used to gener-
ate team statistics useful for performance evaluation or broadcasting
purposes.

Index Terms— Feature extraction, Poisson equation, computer
vision, video analysis, team sports

1. INTRODUCTION

Human behavior analysis is an important task in computer vision.
Despite the fact that there is much research on vision-based individ-
ual behavior analysis [1], group behavior analysis remains a chal-
lenging problem. In group behavior, there are usually many people
located at different positions, moving in different individual direc-
tions which makes it difficult to find effective features for higher
level analysis. In this paper, we investigate team behavior in field
sports. We aim to extract two important features on the field of play
at any time during the game: the highest populated region, corre-
sponding to the area with the highest density of the majority of play-
ers, and the region of intent, corresponding to the region towards
which the team is moving as part of their overall strategy as they
press for territorial advancement.

Detection of the highest populated regions and the regions of in-
tent at each frame could be used to generate useful statistics about
team behavior for coaches. For example, if we compute the highest
populated region for each frame and take the average over the entire
match, the resultant position map can indicate where the team spent
most of its time. On the other hand, the intention map can simi-
larly be computed by averaging the regions of intent obtained during
the match, and it can indicate where a team was focusing its efforts
during the game. For broadcasters, this information could be use-
ful for automatic camera control to follow team activity, potentially
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allowing for fewer camera operators to be present when capturing
non-premium sporting events. In this paper, however, we focus only
on detection of regions of highest population and regions of intent.

1.1. Related Work

There are few approaches which consider detecting similar features
to ours in sports. Kawashima et al. [2] propose to detect group
regions in broadcast soccer video sequences. However, using the
broadcast camera feed is not effective for team behavior analysis,
since the camera usually only captures the current region of inter-
est (such as ball locations) and many team players may not be in
that region. Using the broadcast cameras also suffers from inaccu-
rate player localization because of occlusions, camera motion, etc.
Most of the team behavior analysis methods [3, 4] use a fixed multi-
camera system around the playing field to overcome the limitations
of using broadcast cameras. The multi-camera system usually has a
camera configuration to cover all locations on the field of play and
is therefore able to capture all players simultaneously. Player detec-
tion and tracking algorithms are employed in the videos to obtain
the trajectories, and then these trajectories are transformed into the
top-view (plan view) of the playing field for more accurate analysis.
Kim et al. [3] propose to predict where the interesting events will
occur in soccer games by analysing the movements of all players
(both of the teams) on the playground. They create a motion field on
the top-view of the field of play by spatial and temporal interpolation
of the player motions. Then, they analyze the motion field to detect
the possible location of the important events. Taki and Hasegawa
[4] propose “dominant regions”, where a player can arrive earlier
than any other, to evaluate teamwork in soccer games. The domi-
nant regions are formulated based on a Voronoi diagram model on
the top-view image of the field of play.

1.2. Our Work and Contribution

We propose a new physics-based approach for team behavior analy-
sis. We solve a particular Poisson equation on the top-view image of
the playground using the team players’ positions at each frame and
then process the resultant distributions to determine the highest pop-
ulated regions and detect the regions of highest intent at each frame.
We evaluate our approach on field hockey, using a similar multi-
camera capture set-up to those reported previously, where sample
frames from the our field hockey dataset are shown in Figure 1. In
this work, the trajectory data are collected manually using the multi-
camera network. The trajectory data could also be obtained automat-
ically using a computer vision based tracker or GPS-based wearable
sensors. Regardless of how the trajectory data are obtained, the prob-
lems described in this paper must be addressed by a computer vision
system designed for higher level analysis. Results show that the pro-
posed method can extract the required features on the playground.
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Fig. 1. Sample frames from 2 of the 8 cameras for our hockey dataset

2. THE POISSON EQUATION AND PROPOSED MODEL

2.1. Background to the Poisson Equation

In mathematics, the Poisson equation is an elliptic type partial dif-
ferential equation [5] which arises usually in electrostatics, heat con-
duction and gravitation. The general form of the Poison equation, in
two-dimensions, is given by,

V(%) = —Q(x) (D
where @ is a real-valued function of a space vector x = (z,y)
and it is known as the source term, I is the solution which is also a
real-valued function and V? is the spatial Laplacian operator. Given
a source term @Q(x), we find a solution for I(x) that satisfies the
Poisson equation and the boundary conditions over a bounded re-
gion of interest. There are three general types of boundary condi-
tions: Dirichlet, Neuman and Mixed. Here, we explain the Dirichlet
condition, which is used in our algorithm. In the Dirichlet condition,
the boundary values (solutions) are specified on the boundary. These
values can be a function of space or can be constant. The Dirichlet
condition is represented as I(x) = ®(x), where ®(x) is the function
that defines the solution at the boundary layer.

2.2. The Proposed Poisson Equation and Solution

We use a particular Poisson equation for team behavior analysis
in sport games. We investigate the problem in the context of field
hockey, where the top-view of the hockey field of play is shown in
Figure 2(a) with the team player positions (a field hockey team has
11 players). Given the positions of the team players at any time, we
solve a particular Poisson equation to generate a smooth distribution.

The top-view image of the field of play is assumed to be a binary
image where the player positions are one and the rest of the positions
are zero at any time during the game. Although players are expected
to be in the play area during the game, players sometimes can move
a little outside for a variety of different reasons, such as to serve the
ball, when the ball is out or in order to talk to the coach. Thus, we
expand the binary image of the field of play to include the possibility
that the players may move a little outside the lines. The binary image
is defined to be the source term in the Poisson equation. The bound-
ary condition is Dirichlet which has a specific solution, I(x) = 0, at
the boundaries of the expanded field of play. This means that there
is no possibility for a player to be outside the region of interest. The
proposed Poisson equation problem is,

N
V(2 y) = - (ZfS(ﬂ:—xi,y—yi)) 2
i=1
I(z,y) =0, boundary condition

where N is the number of players in the team and (z;, y;) is the
position of player 7. The source function is assumed to be a linear
combination of dirac-delta functions d(.) in two dimensions. It is

(a) The top-view of the field hockey pitch with player locations
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(b) The position distribution of the team
Fig. 2. Poisson equation applied to find highest populated regions

important to note that the proposed Poisson equation has a unique
and steady-state solution at each frame. Therefore, when players
change their position from the previous frame to the current frame,
the solution also changes in the current frame.

There exist both direct and iterative numerical solution methods
of the Poisson equation. In [6], Simchony et al. pointed out that di-
rect methods are more efficient than multigrid-based iterative meth-
ods for solving the Poisson equation on a rectangular domain, since
direct methods can be implemented using the Fast Fourier Transform
(FFT). In our work, since the field of play is rectangular, we employ
FFT-based direct methods to solve the proposed Poisson equation.
The proposed equation has a Dirichlet boundary condition that needs
discrete sine transforms (using FFT) to achieve an exact solution,
where the detailed description of the solution method is given in [6].
The solution to the proposed equation forms peaks at the player po-
sitions. To smooth these peaks, we apply Gauss-Seidel iterations
(8 iterations), as a post-processing stage, to relax the surface while
maintaining the boundary condition (I(x) = 0) outside the region
of interest.

3. TEAM BEHAVIOR ANALYSIS

We use the resultant distributions at each frame to extract two impor-
tant features related to team behavior: the highest populated regions
and the regions of intent.

3.1. Highest Populated Regions

Since the resultant distribution provides the likelihood of a position
to be occupied by players at that time, the distribution is called the
position distribution of the team. Figure 2(b) shows the normalized
position distribution (divided by the maximum value in the distri-
bution) for the given example. The position distribution has higher
values in a region where the players are close to each other. So, the
highest populated region can be detected by applying an appropriate
threshold to the distribution. If there is more than one region above
the threshold, the biggest region is selected since our aim is to detect
the region with the majority of the players. We assume that there is
always a highest populated region at each frame, because the major-
ity of the team players move together in the same direction during



(b) The intention distribution of the player
Fig. 3. Computing the intention distribution of a player

the game to follow the ball so that they are close to each other and
occupy the same region. The level sets of the position distribution,
which is shown in Figure 2(b), can also be considered as different
threshold levels. We use 85 highest percentiles of the distribution to
detect the highest populated region at each frame, where the bound-
ary of the highest populated region, for the given example, is shown
in Figure 2(a) with a black contour. It can be observed that we obtain
a smooth shaped region of highest population. Three players are ex-
cluded (the goalkeeper and the forward players) in this region, since
they are away from the majority of the players.

3.2. Region of Intent

We aim to detect the region of intent at any time during the game.
The region of intent can be understood as a region to where most of
the team players are moving. We propose a new distribution, termed
the intention distribution, which is obtained by processing the posi-
tion distributions of the players. First we explain how we compute
the intention distribution of a single player, and then how to compute
the intention distribution of the team.

Figure 3(a) shows the direction of movement of the player from
the previous frame (50 frames before) to the current frame, where
the starting point of the arrow represents the position of the player at
the previous frame and the end point represents the position of the
player at the current frame. We compute the position distribution
for that player at the previous and at the current frames. Since the
player moves from the previous position to the current position, the
player creates higher position distribution values in the direction of
motion. To obtain the intention distribution at the current frame, we
apply change detection by simply subtracting the previous distribu-
tion from the current distribution and keep the positive values while
setting the negative values to zero, i.e. (I* — I}'"™) > 0, where I}
represents the position distribution of the player ¢ at frame number
n and m is the number of frames between the current and the previ-
ous frame. Figure 3(b) shows the normalized intention distribution
(divided by the maximum value) of the player. The black contour in
Figure 3(a) represents the boundary of the region of intent, which is
detected using 90 highest percentiles of the distribution.

The intention distribution of the team at the current frame can
be computed by simply summing the intention distributions of the

(b) The intention distribution of the team
Fig. 4. Computing the intention distribution of team.

individual players:

N
ID" =Y (I} = I"™) where V(I = I'""™) >0 (3)

i=1

where D" is the intention distribution of the team. As a post-
processing stage, Gauss-Seidel iterations (8 iterations) are applied to
relax the surface while maintaining the boundary values at zero. The
directions of players movements are shown in Figure 4(a), where the
starting points of the arrows represent players’ positions at the pre-
vious frame (50 frame before) and the arrow magnitudes are propor-
tional to the movement magnitude. The normalized intention dis-
tribution (divided by the maximum value) of the team is shown in
Figure 4(b) with the level sets that are considered as different thresh-
old levels. The region of intent can be extracted by applying an
appropriate threshold to the distribution. As before, in case of mul-
tiple regions above the threshold, we choose the largest. We use 85
highest percentiles of the distribution to detect the highest intention
region of the team at each frame, where the boundary of the highest
intention region is illustrated in Figure 4(a) with a black contour. It
can be observed that we detect a smooth shaped region of intent.

4. EVALUATION

The proposed model is validated on a field hockey dataset, which is
an outdoor team sport with field of play of 91.4 x 55 meters. We
collected a dataset by recording an international match between Ire-
land and Australia (adult ladies). We use eight fixed (and synchro-
nized) cameras around the field in order to cover the entire field of
play and, each camera (Prosilica type) is mounted on pole 20 meters
high. The top-view field of play coordinates of the Australian team
players were then extracted as follows: First players’ positions were
manually labeled for each camera view, then we use homographic
transformation for each camera view to transform the players’ po-
sitions from the image domain to the top-view image domain. If
the same player is identified by more than one camera, the center
of mass of the position candidates on the top-view is computed af-
ter the transformations. We prepared a dataset (team players’ posi-
tions) consisting of 2000 frames (a period of one minute and twenty



Fig. 5. Region of intent detection (team) with different thresholds.

seconds), which is all that could be generated to date given the ex-
tremely labour-intensive nature of generating this data.

Quantitative evaluation of these kind of approaches is a difficult
task, since the highest populated region or the regions of intent can
be subjective, and there is no ground truth for defining these regions.
Kim et al. [3] evaluated their approach, which predicts the locations
of where the interesting event will happen, by comparing with the
location of the ball. Since players focus on the ball during the game
and they move towards the ball position, the ball position can be
considered to be the ground truth to evaluate the detection of the re-
gion of intent of the team. Following this approach, the ball position
is manually annotated to indicate the ground truth position on the
field of play for our approach. Thus, we extract a region of intent at
each frame, and compare with the ball position. If the ball position
is included in the region of intent, it is assumed that the detection
is correct. We believe that this is a reasonable validation technique
which can provide quantitative results for the accuracy of the region
of intent detection. We only evaluate during game play, since if the
game stops such as for free throw, corner or penalty, players do not
run after the ball. The ball is on the playground in 1457 frames in
our dataset. Therefore, we evaluate our method, for the accuracy,
using 1457 frames and compute the correct detection rate (CDR%)
with respect to different threshold levels (70, 75, 80, 85, 90 highest
percentiles) as shown in Table 1.

Table 1. CDR% with respect to different threshold levels.
Threshold >70% >75% >80% >85% >90%
CDR % 97.0 95.6 90.6 83.9 67.4

It is observed that using 70 highest percentiles of the distribution
can achieve 97% for ball position detection, and as the threshold
decreases the CDR% also decreases, where using 90 highest per-
centiles of the distribution achieves 67.4%. Our evaluation shows
that we generate a high quality intention distribution since we can
estimate the region of the ball in most of the frames. Figure 5 shows
an example of team movement, and the region of intent detection
with respect to different threshold levels which we use in the evalua-
tion. Black contours, outermost to innermost, represent the boundary
of the intention region that is detected using the 70, 75, 80, 85 and
90 highest percentiles of the distribution respectively. The black sign
(+) represents the ball position and it is seen that the ball is included
inside the region of intent at all threshold levels.

It should be noted that we cannot compare our approach with
that of Kim et al. [3], because they estimate where the region of
intent will be in a future frame (not in the current frame as in our
approach) by analysing the two teams players positions. Given the
players positions (two teams) at the current frame and at the few
previous frames, they estimate the region of intent in the future (up
to 120 frames later from the current frame). On the other hand, in
our work, given the players position (one team) at the current frame
and in the previous frame (50 frame before), we estimate the region

of intent for the current frame.

The computational time for each part of the proposed approach
are given in Table 2. Since the computation is highly dependent on
the resolution of the top-view playground, we present time evalua-
tions for two different resolutions (360 x 558 and 240 x 372 pixels).
Note that average times for the position distribution and the intention
distribution generation, as well as for the threshold selection and ap-
plication are obtained using the 2000 frames.

Table 2. Average times for the position distribution and the inten-
tion distribution generation for the team, as well as for the threshold
selection and application to the distributions. Results are obtained
using Matlab 7 on a Windows 7 Operating System with Intel Core
17-870, 2.93GHz and 8MB RAM.

Playground Position Intention Threshold Selection
Resolution  Distribution Distribution and Application
(pixels) (ms) (ms) (ms)
360 x 558 388.7 6283.2 21.6
240 x 372 135.5 2213.3 9.7

5. CONCLUSIONS & FUTURE WORK

We have presented a novel physics-based approach for team behav-
ior analysis. Given the team players’ positions, we solve a particu-
lar Poisson equation on the top-view image of the playfield at each
frame and then process the resultant distributions to detect the high-
est populated region and the region of intent at each frame. Results
show that the proposed approach can extract these features success-
fully on the playground. In the future, we plan to equip athletes with
GPS-based wearable sensors in order to obtain player locations. This
will facilitate testing on significantly greater volumes of data. Our
approach can be applied across different team-based sports. We have
performed a preliminary validation of this on a European handball.
We have also verified that the proposed Poisson equation can be used
to recognize the team activities such as different types of offense and
defense in a European handball dataset, which will be presented in
the future.
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