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Abstract We describe a method for player detection

in field sports with a fixed camera set-up based on a

new player feature extraction strategy. The proposed

method detects players in static images with a sliding

window technique. First, we compute a binary edge im-

age and then the detector window is shifted over the

edge regions. Given a set of binary edges in a sliding

window, we introduce and solve a particular diffusion

equation to generate a shape information image. The

proposed diffusion to generate a shape information im-

age is the key stage and the main theoretical contribu-

tion in our new algorithm. It removes the appearance

variations of an object while preserving the shape in-

formation. It also enables the use of polar and Fourier

transforms in the next stage to achieve scale and rota-

tion invariant feature extraction. A Support Vector Ma-
chine (SVM) classifier is used to assign either player or

non-player class inside a detector window. We evaluate

our approach on three different field hockey datasets.

In general, results show that the proposed feature ex-

traction is effective, and performs competitive results

compared to the state-of-the-art methods.
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1 Introduction

Sport video analysis is an important and active topic

in computer vision. In particular, many works focus

on field sports such as soccer, American football and

field hockey, which are very popular outdoor sports

around the world. There are many possible applications

of analysing field sport videos such as event detection

and player/team activity analysis. These high level ap-

plications require low level structural procedures, specif-

ically player detection, classification and tracking. Player

detection is usually the fundamental step in sport video

analysis. There are two possible sources of sport videos:

TV broadcasts and fixed cameras around the playground.

In this paper we focus on player detection in field sports

using a fixed camera infrastructure. However, for com-

pleteness, in the following we review player detection

techniques based on the both sources.

1.1 Using the TV broadcast

Field sports are played outdoors on a large playground

which is an almost homogeneous region. Most player

detection techniques assume the existence of a domi-

nant color (e.g. a tone of green) on a field of play, and

use this characteristic to assist player detection algo-

rithms. The dominant color feature has been used in TV

broadcast videos for player detection [1][3][4][5]. Liu et.

al. [1] learn the dominant color by accumulating HSV

color histograms in a broadcast video. Then the domi-

nant color is used to segment the playfield. According

to the area of the segmented region, they classify view
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types, and player detection is performed in global (i.e.

distance) view type, which is achieved by running a

boosted cascade of Haar feaures [2] on non-playfield re-

gions. Khatoonabadi and Rahmati [3] use RGB color

histograms to determine the dominant color and de-

tect the playground in broadcast videos. The field line

markings are detected in a second step using the Hough

transform. Finally, some restrictions such as area and

ratio of major-length to minor-length are applied to

the remaining regions to detect players. Beetz et al. [4]

model color classes on the playground (i.e. the field is

green and the lines are white) using a mixture of Gaus-

sians in RGB space, and use this model to segment the

playfield regions. Next, they use special templates to

detect players based on color distributions, compact-

ness and vertical spacing of the remaining regions. A

comprehensive survey on player detection using the TV

broadcast is given in [5].

Using broadcast cameras however cannot allow us to

address some specific tasks such as team activity and

strategy analysis, evaluation of player performances,

2D/3D reconstructions and visualizations of player ac-

tions. This is because the broadcast camera usually only

captures a specific region (such as ball locations) and

many players may not be in that region. Using broad-

cast cameras also suffers from inaccurate player detec-

tion because of camera motions, occlusions, etc.

1.2 Using fixed cameras

Fixed multi-camera systems usually cover all locations

on the field of play and therefore capture all players

simultaneously. Background subtraction is a common

method for player detection with a fixed camera in-

frastructure [6][7][8][9][10]. To consider problems in out-

door scenes such as changes of illumination, shadows,

background objects, etc., these methods need to fre-

quently update the background representation model.

Some statistical adaptive methods [11][12][13][14] have

been proposed, but these methods only work well for

simple scenes with slow changes of illumination. These

approaches can also easily incorporate objects that stop

moving for a certain time into the background model.

In field sport, it is common to have players (e.g. goal-

keeper) that stand still for many video frames. Figueroa

et al. [7] pointed out that applying a median filter along

the pixels of some consecutive frames for background

modelling can increase the tolerance to illumination

changes and facilitate still player detection in compar-

ison to statistical adaptive methods. Carr et al. [10]

created shape-specific occupancy maps on the ground

plane using the foreground regions after background

subtraction for player detection. This approach increases

the tolerance to shadows, but can only identify isolated

individuals. Xu et al. [6] integrated the dominant color

and geometry information of the field to assist back-

ground subtraction for player detection. Vandenbroucke

et al. [15] proposed a player detection technique based

on color image segmentation instead of using the tem-

poral information. However, all of the methods based

on background subtraction and image segmentation fail

when a single segmented region contains multiple play-

ers or when a single player is segmented into multiple

regions.

2 Our motivation and contribution

Player detection algorithms have to face challenging sit-

uations in field sports such as variability of lighting and

weather conditions, geometric variations of the play-

ers in images such as scale and rotation depending on

the camera view point. Players may appear at differ-

ent scales, resolution and orientation depending on the

distance to camera and direction of their movement.

Player appearance is also strongly influenced by the

team uniform and illumination, since there is a wide

range of player uniform colors and textures. We propose

to address these problems, and introduce an approach

for player detection within a fixed camera infrastruc-

ture in field sports. We evaluate our approach on field

hockey, where the top-view playground and the camera

configuration is shown in Figure 1(a). A sample frame

from one of the camera views is also shown in Figure

1(b). We constrain the pose to standing, walking, run-

ning and bending. A player corresponds to any human

on the playground including both team players and ref-

eree.

The proposed approach is based on a sliding win-

dow technique on an individual image. Given a video

frame, we compute a binary edge image. There may

be edges detected outside the playground because of

audience and advertisements. These edges are removed

by a geometry-based playground mask to restrict fur-

ther processing and accelerate detection speed. Since

the playground is almost homogeneous in field sports,

the remaining edges belong to the field markings, play-

ers and noise on the playground. The detector window

is then scanned across the edge regions. The window

dimensions are determined based on known camera ge-

ometry and prior information of the target object class.

Given a set of binary edges in a sliding window,

we introduce and solve a particular diffusion equation

to generate a shape information image. The proposed

diffusion to generate a shape information image, inside

the detector window, is the main theoretical contribu-

tion and the key stage in our new algorithm. Despite
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(a) (b) (c) (d) (e)

Fig. 1 (a) The top-view of the playground with camera locations. (b) A sample frame of dimensions 959× 539 from a camera
view. (c) Binary edge image from the red box in sample image. (d) The geometric-mask of the playground. (e) Binary edge
image from the red box after masking operation.

the missing edges of an object because of low resolution

or noise, the proposed diffusion can fill inside the ob-

ject’s shape while preserving the shape information. It

removes the appearance variations (i.e. color and tex-

ture) of an object. It also enables to use polar and

Fourier transforms in the next stage to achieve scale and

rotation invariant feature extraction. The heat diffusion

analogy has been deployed before in various ways in im-

age processing and computer vision. It has been used

for: image smoothing and enhancement [16], region-

based image segmentation [17], skeletonization [18], mul-

tiscale shape description [39], and motion analysis [19][20].

However this is the first time a particular heat diffusion

equation is used for estimating shape over the binary

edge maps.

After the proposed features are extracted, a support

vector machine classifier is used to label either player

or non-player class at each window location. We evalu-

ate our approach on a field hockey dataset on different

camera views. The results show that our approach is ef-

fective, and in general it performs better than the state

of art techniques for player detection.

3 Region of interest selection

The search region is estimated based on edge features

derived from the image data and known playfield ge-

ometry. The first step in our approach is binary edge

detection using the Canny method [23]. Canny edge de-

tection is perhaps the most popular edge detection tech-

nique at present. The first requirement is to reduce the

response to noise with Gaussian filtering. Then, a finite

difference edge finder is applied to compute the gra-

dient magnitude. Then non-maxima suppression (peak

detection) is applied to the gradient magnitude image

that retains only those points at the top of the ridge,

whilst suppressing others. Finally, Hysteresis threshold-

ing is used, which involves two thresholds, to obtain bi-

nary edges. In our experiments, the standard deviation

of the Gaussian filter is 0.4. The finite difference edge

finder is the Sobel operator. The thresholds to obtain

the binary image are determined automatically. In this

process, the non-maxima suppressed image is thresh-

olded by the scaled median value of the gradient mag-

nitude image. The upper and the lower thresholds are

determined as TH = c × median(G) and TL = TH/2.

Where, median(G) is the median value in the gradient

magnitude image G. c is a scale factor for threshold

selection which is a positive constant. Higher values of

c cause higher values for the thresholds. However, the

threshold values must be smaller than the maximum in-

tensity values of the image which we are thresholding.

In this evaluation, the optimum value for c is 9 deter-

mined experimentally. The ratio between high, TH , and

low, TL, thresholds is 2.

Since the playground is homogeneous in field sports,

the edges mostly belong to the field markings, players

and noise on the playground as shown in Figure 1(c).

There are also edges detected outside the playground

because of audience and advertisements. These edges

are removed by a geometry-based playground mask.

The geometry-based mask has been similarly used by

[6] to assist player segmentation. The geometry-based

mask is obtained by using Homography transformations

from the image plane to the top-view ground plane (i.e.

2D to 2D plane transform). Suppose thatH is the trans-

formation matrix from the image plane to ground plane

and C is the coordinate range of the ground plane.

If an image point, x = (x, y), is in the ground plane

coordinate after the transformation, it is one, other-

wise it is zero. The geometry-based mask can be rep-

resented as follows M = {(x, y)|H(x, y) ∈ C}. The bi-

nary geometry-based mask image and the binary edge

image after the masking operation are shown in Figure

1(d) and 1(e). To further accelerate the detection, we
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process only the window regions which include a signifi-

cant number of edge points. If the total number of edge

points, inside a window, is higher than a pre-defined

threshold (i.e. T = 10 in our experiments), we employ

feature extraction and classification.

4 Window aspect-ratio and dimensions

The window aspect-ratio and dimensions are determined

based on prior information of the target object class

and known camera geometry respectively. The window

aspect-ratio (height divided by width) is 1.6 which is

estimated experimentally based on annotated player re-

gions to cover poses such as standing, walking, running,

and bending. The window dimensions are determined

during the scanning process using the camera geome-

try. Each scanning point is assumed to be the bottom

middle point of the window, and this point is projected

from the image coordinates to world coordinates onto

the ground plane. This is a 2D to 3D inverse perspective

transformation with height equal to zero meters. Then

we make the height 1.8 meters in the world coordinate

system, assuming that players are 1.8 meters tall, and

project back to the image coordinates (i.e. 3D to 2D

direct perspective projection). The projected point is

the top point of the window. We can compute the win-

dow height in pixels using the top and bottom points

of the window. The width can be calculated using the

aspect-ratio (i.e. 1.6). However, instead of computing

the width at each scanning, we select one of the pre-

defined window dimensions depending on the height

of the window. These pre-defiend window dimensions

are estimated using the annotated player regions. If the

height is less than 40 pixels, the window dimensions are

40 × 25. If the height is between 40 and 48 pixels, the

window dimensions are 48×30. If the height is between

48 and 56 pixels, the window dimensions are 56 × 35,

and finally if the height is between 56 and 64 pixels, the

window dimensions are 64× 40.

5 Shape-information image generation using a

heat equation

Here, we introduce the key stage and the main theo-

retical contribution in our algorithm. In each detector

window, there can be missing or disconnected edges of

an object due to low resolution, noise etc. If there is

a player in the window, it means there are also edges

because of the team uniform texture and style. Edge

detection is a low-level feature extraction, and it does

not give any object shape information. We address these

problems by solving a particular heat diffusion equation

in the window region. The proposed diffusion generates

a shape-information image of an object. The heat dif-

fusion analogy has been used before in image process-

ing and computer vision such as for image smoothing

and enhancement [16], region-based image segmenta-

tion [17], multi-scale scape description [39], skeletoniza-

tion [18], and motion analysis [19,20]. However this is

the first time a particular heat diffusion equation is used

for shape estimation over the binary edge maps. First,

we explain the basic concept of heat diffusion, and then

describe the proposed diffusion problem to generate a

shape-information image.

5.1 Basic concepts of heat diffusion

Conduction or diffusion is the flow of heat energy from

high- to low- temperature regions due to the presence

of a thermal gradient in a body [24]. The change of tem-

perature over time at each point of a two-dimensional

material is described using the general heat diffusion

equation,

∂T (x, t)

∂t
= α∇2T (x, t) = α

(
∂2T (x, t)

∂2x
+
∂2T (x, t)

∂2y

)
(1)

where ∂T (x, t)/∂t is the rate of change of tempera-

ture and (x,t) = (x, y, t) is space and time vector, ∇2 is

the spatial Laplacian operator for the temperature, α is

called thermal diffusion coefficient of the material and a

larger values of α indicates faster heat diffusion through

the material. The solution of this equation provides the

temperature distribution over the material body and

it depends on time, distance, properties of material, as

well as specified initial and boundary conditions.

Initial conditions specify the temperature distribu-

tion in a body, as a function of space coordinates, at the

origin of the time coordinate (t = 0). Initial conditions

are represented as follows,

T (x, t = 0) = F (x) (2)

where F (x) is the function that specifies the ini-

tial temperature inside the body. Boundary conditions

specify the temperature or the heat flow at the bound-

aries of the body. There are three general types of bound-

ary conditions: Dirichlet, Neuman and Robin. Here, we

explain the Dirichlet conditions, which is used in our

algorithm. In the Dirichlet condition, temperature is

specified along the boundary layer. It can be a function

of space and time, or constant. The Dirichlet condition

is represented as follows,
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T (x, t) = Φ(x) (3)

where Φ(x) is the function that specifies the temper-

ature at the boundary layer. A tutorial on heat diffusion

theory is also given in [25][26].

5.2 Proposed heat diffusion problem and solution

Given a set of binary edges in a sliding window, we pro-

pose and solve a heat diffusion equation. The solution of

the proposed equation fills the inside the object shape

while preserving the shape information. Therefore it re-

moves the appearance variations (i.e. color and texture)

of an object. The proposed equation is given below,

∂I(x,t)
∂t = E(x)∇2I(x, t)

with

∣∣∣∣ I(x, t = 0) = 1− E(x), initial condition

I(x, t) = 0, boundary condition

(4)

where E is a binary edge image of a space vector

x = (x, y) and in diffusion theory it is known as the

diffusion coefficient. In this equation, the diffusion co-

efficient E(x) is space variant (i.e. non-uniform) where

the edge positions are zero and the rest of the positions

are one. I is a solution that is a real-valued function

of a space and time vector (x,t) = (x, y, t). The solu-

tion, I, depends on the diffusion coefficient, as well as

the initial and boundary conditions over a bounded re-

gion of interest. The initial condition is a binary image

where the edge positions are one and the rest of the

positions are zero (1− E(x)). The boundary condition

is Dirichlet which has a specific solution, I(x, t) = 0, at

the boundaries of the window. The proposed diffusion

problem has a steady-state solution since it is a linear

and homogeneous diffusion equation [24] with a space

variant diffusion coefficient. In this work, the numer-

ical solution is obtained using a multigrid solver [27]

since it is computationally more efficient than iterative

methods. Figures 2 (a-d) show shape-information im-

ages generated for the given samples, where the top

five samples represent players and the bottom five sam-

ples represent background (non-players). The solution

of the proposed diffusion enables the use of polar and

Fourier transforms in the next stage to achieve scale

and rotation invariant feature extraction.

In Figure 3, we compare the proposed diffusion with

the morphological operation for the object shape esti-

mation using the binary edges. In morphological op-

eration, first the closing operation (i.e. dilation and

then erosion) is applied to the binary edge map using

a predefined structuring element, and then we fill the

small regions inside the object. To visual inspection,

it is seen that the proposed diffusion can estimate the

player shapes better than the morphological operation.

The morphological operation is more sensitive to miss-

ing edges in comparison to the proposed diffusion. In

morphological operation, if the size of the structuring

element is small, it cannot handle missing edges (i.e.

the missing parts of the boundary) well, and fails to

estimate object shape. On the other hand, if the size of

the structuring element is large, it can disturb and re-

move the important curvatures of the shape, and again

it may fail to estimate the object shape.

Figure 4 also shows the behaviour of the proposed

diffusion in case of presence of the field lines edge pix-

els in the background (i.e. background clutter). In this

case, we may observe failures in player shape estima-

tion.

6 Scale and rotation invariant feature

extraction

As we described in Section 4, the detector window’s di-

mensions change depending on the player location on

the playground. The orientation of a player may vary

depending on the direction of movement, as well as the

camera view point. For example, in Figure 2 (a) and

(b), despite they are both upright their orientation is

different. Players’ scales may also differ at each detector

window even if the window’s dimensions are the same.

To overcome these problems, the coordinates of each

window image are polar mapped [29][30] onto an image

of fixed dimensions, i.e. 32 × 32. In the polar mapped

image, rotations appear as translations, and image di-

mensions are the same for all samples. Consider the po-

lar coordinate system (r, θ), where r ∈ < denotes radial

distance from the center of the window image (xc, yc)

and 0 ≤ θ ≤ 2π denotes angle. Any point (x, y) ∈ <2

can be represented in polar coordinates as follows,

r =
√

(x− xc)2 − (y − yc)2
θ = tan−1( y−ycx−xc

)
(5)

There are two principal methods for mapping a rect-

angular image to a circle in the polar transform. The

image can either be fitted within the circle or the cir-

cle can be fitted within the boundaries of the image.

The main problem with fitting the circle within the

boundaries of the image is losing the information in

the corners. Since we want to use all information in

the window image, we use the method that fits the im-

age within a circle. In this method, all pixels will be
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2 (a) Top five samples are for players and the bottom five samples are for non-players. (b) Binary edges (c) Shape-
information image. (d) The color-mapped shape-information image. (d) The polar transform image (e) The color-mapped
polar transform image (f) The Fourier magnitude image.

(a) (b) (c) (d)

Fig. 3 Comparison of morphological operation and the proposed diffusion for shape estimation. (a) Samples, (b) Binary edges,
(c) Binary object image after morphological operations, (c) Shape-information image after the proposed diffusion.
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(a) (b) (c)

Fig. 4 The behaviour of the proposed diffusion in the presence of field lines in the background. (a) Samples, (b) Binary edges,
(c) Shape-information image after the proposed diffusion.

taken into account but some invalid pixels will also be

included, which fall inside the circle but outside the im-

age. In our algorithm these invalid pixel values are set

to zero. Figure 2 (e) shows the polar transform of the

shape-information image for each sample. For better vi-

sualization, Figure 2 (f) shows the color-mapped polar

transforms.

Then 2-D Fourier transform is applied to the polar

mapped image, as given below, to compute the Fourier

magnitude, which removes these translations.

F (k, l) =
1

MN

M−1∑
r=0

N−1∑
θ=0

P (r, θ)e[−j2π(kr/M+lθ/N)] (6)

where F (k, l) is the Fourier transform of the po-

lar mapped image P (r, θ) of size M×N. The resultant

Fourier magnitude image, |F (k, l)|, is translation invari-

ant which means that it is player rotation invariant. Ap-

plying the Fourier transform over polar mapped image

to achieve rotation invariance is not a novel approach.
First it has been introduced as a part of the Fourier-

Mellin transform algorithm [28] that performs rotation,

size and translation invariant image feature extraction

in 2-D space. Later, it has been utilized by the well-

known region-based shape description techniques [29][30].

These techniques apply polar and Fourier transforms to

the binary images of the objects to achieve the rotation

invariance, on the other hand we apply these transforms

to the solution of the proposed heat diffusion equation.

Figure 2 (g) shows the Fourier transform magnitude

images for each polar transform sample.

To achieve scale invariance of the object, all of the

Fourier magnitude values are divided by |F (0, 0)|, the

DC-value of the image that corresponds to the average

brightness. In our implementations the Fourier magni-

tude image is shifted in a way that the DC-value is

displayed in the center of the image. Distance from

this center point represents increasing frequency. The

lower frequency components of the Fourier descriptor

capture the general shape properties of the object, and

the higher frequency components capture the finer de-

tail. For efficient shape description, only a small number

of the descriptors should be selected for shape represen-

tation. In our work, a shape-information image and its

polar transform is a smooth distribution, and most of

the shape information is contained in the low-frequency

components. To select the lower frequency components

as descriptors, we draw a circle around the center point

(i.e. DC-value point) with a pre-defined radius, and

choose all of the descriptors within the circle, except

the descriptor in the center point, to represent shape.

We form a one-dimensional vector with these features;

in our experiments the radius of the circle is 5 which

results in 100 features for shape representation. It is

important to note that we choose Fourier-based shape

description because it is proven that Fourier descriptors

are easy to compute and robust in 2D shape classifica-

tion [29][30].

7 Classification using the shape features

A Support Vector Machine (SVM) with a Gaussian ra-

dial basis function kernel is used to label either a player

or non-player in each detector window. Our experi-

ments show that the proposed features achieve better

results with the Gaussian kernel in comparison to other

possible kernel functions in SVM. The scaling factor of

the Gaussian kernel is 2.1. The upper bound on the

Lagrange parameters is 5. These parameter values are

selected using the cross validation on the training set.

In addition, we use the sequential minimal optimiza-

tion method to find the separating hyperplane since we

have a large training set and this method is computa-

tionally efficient. Our detection system takes an image

and returns a set of bounding boxes (BB) and a confi-

dence value for each detection. Then non-maximal sup-

pression is applied for merging nearby detections, using

the confidence values, to determine the final detections.

In our method the confidence value is the SVM deci-

sion value. The non-maxima suppression is a pairwise
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(a) (b)

Fig. 5 Detections (a) before and (b) after non-maximal suppression

max (PM) suppression [22] which greedily selects high-

scoring detections and discards detections that signifi-

cantly overlap with a previously selected detection. The

overlap is measured as follows:

Γij =
area(BBi ∩BBj)
area(BBi ∪BBj)

(7)

where Γij is the overlap measure between two dif-

ferent bounding boxes BBi and BBj . In our experi-

ments, non-maximal suppression is applied if Γij > 0.2

(more than 20% overlap). Figure 5 (a) and (b) show de-

tections before and after the non-maxima suppression

respectively, with the proposed method.

8 Evaluation and results

The proposed approach is validated on a field hockey

dataset. There are eight fixed cameras around the field

in order to cover the entire playground and, each cam-

era is mounted on a pole 20 meters high. In this paper,

we present results for three different camera views, two

of them (Camera 1 and 2) are corner view cameras and

one of them (Camera 3) is a side view camera. Figure 5,

6 and 7 show example frames, respectively, for Camera

1, 2 and 3. The dimensions of the frames are 959×539.

For training, we collect 1375 player samples from differ-

ent camera views with variation of appearance, scale,

rotation and pose. The non-player samples are differ-

ent for each camera view since each camera view has

a different background image (i.e. the image with no

players in the scene). The edge regions are scanned af-

ter geometry-based masking to extract and collect non-

player features. As a result Camera 1, 2 and 3 have,

respectively, 13420, 12514 and 3111 non-player samples

for training. For testing, we prepare a dataset for each

camera view by manually labelling the ground truth

BBs. There are 4526, 4780 and 2407 players labelled in

Camera 1, Camera 2 and Camera 3 datasets, respec-

tively, in 301 consecutive frames for each view. In total,

11713 player BB locations are manually labelled from

three different camera views for evaluation.

We evaluate our approach while comparing with

nine different methods: A background subtraction (BS)

method [7], the Histogram of Oriented Gradients (HOG)

features [21] describing the human body shape, the De-

formable Part based Model (DPM) [22] that also use

the HOG features to describe human body shape with

a part based approach, using a pre-trained Convolu-

tional Neural Network (CNN) (AlexNet) as a feature

extractor [37], with the selective search method that is

used for detecting objects using hierarchical grouping

and SVM [36], the PSHOG model which combines the

proposed shape proposal with the HOG features. In ad-

dition to these methods, we also perform comparison to

the different shape representations. For example, in our
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algorithm, instead of using the proposed shape proposal

we use binary foreground mask of an object appear af-

ter morphological operations to the binary edge image

(abbreviated with MORPH on the graphs and tables).

This representation is shown in Figure 3 (c). We also

compare with the smoothed version of the binary fore-

ground mask. A Gaussian filter is used for smoothing,

and this method is abbreviated with Gauss in the evalu-

ations. In addition we compare with the shape that ap-

pears after passing the binary foreground mask through

sigmoid function to get values between 0 and 1. This

method is abbreviated with SIGD in evaluations.

The BS method [7] is a commonly used method for

player detection with a fixed camera. This method, in

our evaluation, extracts the background image by ap-

plying a median filter along the pixels of 70 consecutive

frames. Then, the difference between the current and

the background image is computed, and a threshold is

applied to the difference image for binarization. The

threshold value to binarize the difference image is 13.

The next step is morphological filtering (i.e. opening

and closing) to eliminate noise and connected pixels la-

belling to define players regions. The parameter values

in the BS method [7] are determined experimentally

using an additional validation set.

The HOG+SVM [21] is combined with the sliding

window technique in an individual image for player de-

tection. The region of interest, and the window aspect-

ratio and dimensions are determined as described in

Section 3 and 4. The estimated window dimensions are

normalized to 56× 35. Then we compute the HOG fea-

tures in this region. In our experiments, the number

of orientation bins is 7, the cell size is 10 × 10 pixels,

the block size is 2 × 2 cells, the stride of the blocks is

10 pixels, and the L2-norm is used to normalize con-

trast for each block. The feature vectors for all blocks

are concatenated to yield a final feature vector, and the

dimension of the final feature vector is 420. In SVM,

linear kernel function (i.e. dot product) is used to map

training data into kernel space. Our experiments show

that, in our datasets, the HOG features achieve the best

results with the linear kernel in comparison to other

possible kernel functions. The upper bound on the La-

grange parameters, in linear SVM, is 0.15. The SVM

parameter value is determined using the cross valida-

tion on the training set.

The DPM+LSVM [22] is also combined with the

sliding window technique in an individual image for

player detection. In DPM, the person model is defined

by filters such as the root filter (i.e. whole body fil-

ter) and part filters (i.e. head filter, right shoulder filter

etc.). These filters score sub windows of a feature pyra-

mid for person detection, where the feature pyramid is

computed by computing the image pyramid. The num-

ber of levels in the pyramid is 5. The pyramid approach

also makes this model scale invariant. Responses from

root filter and part filters are computed at different lev-

els in the pyramid to increase the performance as dis-

cussed in [22]. They use HOG features, but the lower

dimensional ones that are obtained after principal com-

ponent analysis (PCA). The dimension of the HOG fea-

tures representing this model is 36, with 9 orientations

and 4 normalizations. We trained DPM filters with the

same samples that we used in our approach and HOG.

The Latent SVM is used for training and classification

of the person. These parameter values are determined

experimentally on a different validation set. We use the

original matlab codes implemented by authors [31] for

comparison.

Convolutional Neural Network (CNN) is a type of

feed forward artificial neural network. Nowadays CNN

is the state-of-the-art tool for image classification. There-

fore, we compare the proposed method with the CNN

method. CNNs are trained using large image collections

of diverse images and they learn rich image features

from these collections. One of the major drawbacks of

the CNN method is the long time needed to train deep

networks. However, without investing time and effort

into training, a pre-trained CNN can be utilized as a

feature extractor, which we perform as a comparison

with the proposed method. Instead of using the pro-

posed method for feature extraction, we apply CNN as

a feature extractor using the Matlab instructions given

in [37]. In particular, we keep the proposed system ar-

chitecture the same, but use CNN features instead of

diffusion features. We use AlexNet [35] pre-trained net-

work as a feature extractor. The training data consist

of 1375 player images from three different camera views

with varying appearance, scale, rotation and pose. Non-

player samples consist of 13420, 12514 and 3111 images

for camera 1, 2 and 3 respectively. For CNN training,

first these images are re-sized to AlexNet image re-

quirements (i.e. 227x227), since we fine-tune AlexNet

[35] pre-trained network as a feature extractor. We ex-

tract features from the last layer of the CNN (i.e. fc7

layer of the AlexNet which is the last layer before clas-

sification). We use Stochastic Gradient Descent (SGD)

method for CNN training. We also use the suggested

training parameters of AlexNet [35]. The CNN training

parameters such as the maximum number of iterations,

learning rate, step size, weight decay, momentum and

gamma are set to 40000, 0.001, 1000, 0.0005, 0.9 and

0.8 respectively. Finally we train a linear SVM classifier

using CNN features (i.e. the output of the last layer of

CNN) instead of diffusion features for classification. For

testing 11713 players BB locations are manually labeled
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(a)

(b)

(c)
Fig. 6 (a)Precision-Recall curves comparison with other techniques (left - without hard negative mining, right - with hard
negative mining): (a) Camera #1 dataset, (b) Camera #2 dataset and (c) Camera #3 dataset.

from three camera views, as we explained in section 8.

Testing images are also re-sized to 227x227 according

to AlexNet image requirements for classification.

In the selective search method [36], images are seg-

mented to produce image regions. Then a hierarchical

grouping algorithm is recursively used to group smaller

regions into larger regions until the whole image be-

comes a single region. During hierarchical grouping,

they combine multiple grouping criteria such as sim-

ilarities in colour, texture, brightness, size and shape

compatibility, thus able to deal with many image condi-

tions as possible. After determining the image regions,

they classify the object present in that region. For the

classification, SVM with HOG is used by utilizing the

bag-of-words for object recognition. We use the original

matlab codes implemented by authors for comparison.

We use the original matlab codes implemented by au-

thors [38] for comparison.

On the other hand, some of the methods (such as

the DPM+LSVM [22]) perform better when the hard

negative mining (HNM) technique is applied. In HNM,

negative examples (false positives are feed into the clas-

sifiier so that the classifier learns from the negavtive ex-

amples. Generally few rounds of negative examples are

applied. Since after few rounds, adding more negative

examples does not improve the classification accuracy

significantly and that there may be an inbalance be-

tween number of positive and negative samples (HNM

may produce more negative examples). Our aim is to

evaluate the effect of HNM on average precision values.

Therefore in the evaluations we included HNM in the

training of the proposed method and in the training of

all compared methods. For each method, we re-train

the SVM with negative examples that are incorrectly

classified. We repeat the process 2 rounds (2 cycles of

hard negative mining) for each method.
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(a)

(b)

(c)
Fig. 7 (a) Precision-Recall curves comparison with the other shape proposals (left - without hard negative mining, right -
with hard negative mining): (a) Camera #1 dataset, (b) Camera #2 dataset and (c) Camera #3 dataset.

Table 1 Average presision values (P) for each camera dataset (with and without hard negative mining (HNM)).

Method Camera 1 Camera 1 Camera 2 Camera 2 Camera 3 Camera 3

without HNM with HNM without HNM with HNM without HNM with HNM

Proposed Features+SVM 0.9181 0.9364 0.9049 0.9459 0.9196 0.9308

HOG+SVM [21] 0.9171 0.9289 0.8514 0.9155 0.9204 0.9290

PSHOG 0.9239 0.9297 0.8957 0.9108 0.9115 0.9235

CNN 0.9259 0.9432 0.9028 0.9314 0.9223 0.9329

DPM+LSVM [22] 0.8055 0.8984 0.7980 0.8920 0.7859 0.8835

Selective Search 0.7690 0.8103 0.8462 0.8790 0.7676 0.8062

BS [7] 0.6292 0.6675 0.4771 0.5538 0.5962 0.6258

SIGD 0.8865 0.9208 0.8662 0.9005 0.9146 0.9237

Gauss 0.8620 0.8902 0.8521 0.8804 0.9012 0.9127

Morph 0.8535 0.8893 0.8329 0.8523 0.8952 0.9062

8.1 Quantitative evaluation

Performance evaluation is based on comparing the de-

tected BB locations with the manually labelled ground-

truth BB locations for test sequences. A detected BB

and a ground truth BB form a potential match if they

overlap sufficiently. Each detected BB and ground-truth
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BB may be matched at most once. If a detected BB

matches multiple ground-truth BBs, the match with

highest overlap is used. The overlap is measured with

Equation 7, and a correct detection is achieved if Γij >

0.25. Note that Enzweiler et al. [32] also used Γij >

0.25 to evaluate the pedestrian detection algorithms

using Equation 4. We measure the performance based

on two different acceptable measurement methods. For

the first measurement, we present the precision-recall

curves and evaluate the average precision value for each

method as in PASCAL VOC challenges [33]. For the

second measurement, we evaluate the precision, recall

and F-Score values at a single threshold.

8.1.1 Precision-Recall curves and average precision

value

We provide precision-recall curves and also report aver-

age precision over the fixed recall levels [0, 0.1, 0.2, . . . , 1].

Here, the precision is defined as P = Pc/Pt, where

Pc is the number of BB locations correctly predicted

and Pt is the total number of BB locations predicted

as belonging to player class. The Recall (i.e. detection

rate) is defined as R = Rc/Rt, where Rc is the num-

ber of BB locations correctly predicted and Rt is the

total number of BB locations that actually belong to

the player class. The precision at each recall level is

interpolated, this also reduce the impact of wiggles in

the precision-recall curves. The average precision (AP)

summarize the shape of the curve. This notation has

been used in PASCAL VOC challenges [33]. Figure 6

(a), (b) and (c) show the precision-recall curves of the

methods for Camera #1 , Camera #2 and Camera #3

datasets respectively. Since we apply HNM, we also il-

lustrate average precision values with and without the

HNM technique for all of the compared methods. Table

1 shows the average precision of the methods for each

camera view with and without the HNM.

According to the average precision values in Camera

#1 dataset, when the HNM is not applied, CNN [37],

the proposed method, HOG+SVM [21] and PSHOG

outperforms the DPM+LSVM [22], BS [7], selective

search[36], SIGD, Gauss and Morph methods. Without

the HNM, CNN achieves the best accuracy and PSHOG

is slightly behind the CNN. The proposed method per-

forms slightly better than the HOG+SVM [21]. Al-

though DPM+LSVM [22] achieves good results in pedes-

trian/person detection, this method is not good at player

detection in field sports. Because the players appear at

small scale, low resolution as well as different orienta-

tion because of the distance to camera and direction

of their movement. It is difficult to distinguish and de-

scribe the human body parts under these conditions,

and therefore the DPM+LSVM [22] method fails to de-

tect players. In HOG+SVM [21], the HOG features de-

scribe the whole body shape, and does not include the

body part features separately in the description. This

is the reason it performs better than the DPM+LSVM

[22]. Describing the whole body shape alone is more

effective when the object appears at small scale and

low resolution. The selective search and DPM+LSVM

methods achieve similar performances comparing to other

methods. Although the selective search is good at de-

tecting various objects, it is not good for detecting play-

ers at small scale, which is also shown by their results

on VOC 2010 dataset [36]. The BS method [7] also fails

to detect players because of variability of lighting and

weather conditions as well as low resolution. Overall,

the results show that when the HNM is not applied,

CNN, PSHOG and the proposed method achieve good

performances. Using CNN as a feature extractor is the-

state-of-the-art deep learning method that we applied

for player detection. Even though we have used a pre-

computed AlexNet network, feature extraction using

CNN is computationally expensive. In addition, with

high resolution images, generally CNN as a feature ex-

tractor achieves results close to 100%. However, as a

requirement of the AlexNet, we re-size low resolution

images of very small sized players that are captured

from a distance to 227x227 image dimention require-

ments. As a result, this affected the performance of the

CNN. On the other hand, Without the HNM, the pro-

posed method generally achieves good results since, in

general, it can handle the distance (i.e. players’ scales),

low resolution, as well as the occlusion problems well.

When the HNM is applied, in Camera #1 dataset,

the proposed method improve the performance consid-

erably with 0.9364 average precision and it is slightly

behind the performance of CNN (0.9432). Although

the PSHOG and the HOG+SVM improve their per-

formances with the HNM technique, they stay behind

the performances of CNN and the proposed method.

In addition, when the HNM is applied, we observed

that the DPM+LSVM considerably improve the aver-

age precision values compared to other methods. This

is because the DPM+LSVM method produces many

bounding boxes and designed to learn from negative

examples using HNM. Overall, the results show that

when the HNM is applied, the CNN and the proposed

method achieve the best results.

The resolution of the images captured by Camera

#2 is a bit lower than the resolution of images cap-

tured by Camera #1. This difference appears because

of some technical problems in Camera #2. From the

average precision values in Camera #2 dataset, it can

be observed that all of the methods are affected by the



Player Detection in Field Sports 13

lower resolution problem except the proposed method

(including with and without the HNM). Without the

HNM, the average precision value of the proposed method

is 0.9049, which is better than the other methods. The

average precision values of HOG+SVM [21], BS method

[7], DPM+LSVM [22], PSHOG, CNN [37], the selec-

tive search are 0.8514, 0.4771, 0.7980, 0.8957, 0.9028,

and 0.8462 respectively (without the HNM). We ob-

serve that CNN is affected by low-resolution images. In

this dataset, proposed method, CNN and HOG+SVM

are the best performing techniques. The closest perfor-

mance to these three methods are achieved by PSHOG.

In particular, CNN and PSHOG handled the low reso-

lution images slightly better than the rest of the meth-

ods. When we look at the performance of the selective

search method on different datasets, it is also shown

that this method can handle low resolution images bet-

ter (i.e. performance on Camera #2) since it combines

various similarity metrics during hirearchical grouping

of image regions. When the HNM is applied, in Cam-

era #2 dataset, the proposed method achieves the best

results with 0.9449 average precision. This result shows

that the proposed method both handles low resolu-

tion images better and improve more with the HNM

comparing to other methods. We also observed that

again DPM+LSVM significantly improve the average

precision with the HNM and also improvement of the

PSHOG with the HNM stay limited comparing to other

techniques (the PSHOG improve slightly).

The Camera #3 is a side view camera, and the

dataset includes frames captured during the fast move-

ment of players, when they were running. This causes

higher variation of the human body shape with respect

to time. According to the average precision results, the

DPM+LSVM [22] method cannot handle the large vari-

ations of the body parts, and perform worse comparing

to other methods. In this dataset, with and without the

HNM, the proposed method, CNN and HOG+SVM [21]

outperforms other methods, and their average precision

values are very close. In this dataset, performances of

the rest of the methods are correlating with their per-

formances on Camera #1 and Camera #2 datasets.

The novelty of the proposed method is mainly the

use of the heat diffusion equation for shape representa-

tion. Therefore we also perform comparison to the dif-

ferent shape representations. In our algorithm, instead

of using the proposed shape proposal we use other shape

proposals for comparison. For example, we use binary

foreground mask of an object appear after morpholog-

ical operations to the binary edge image (abbreviated

with MORPH). We also compare with the Gaussian

smoothed version of the binary foreground mask (ab-

breviated with Gauss). In addition we compare with the

shape that appears after passing the binary foreground

mask through sigmoid function to get values between 0

and 1. This method is abbreviated with SIGD in eval-

uations. These evaluations are shown in Figure 7 for

all of the datasets. Again we report the results with

and without the HNM technique. Evaluations show that

the proposed shape proposal performs consistently bet-

ter than MORPH, Gauss and SIGD. In particular, in

Camera #1 and Camera #2 datasets, the proposed

method outperforms the other methods. On Camera

#3 dataset, we observe very close performances but the

proposed method still achieves slightly better accuracy.

With the HNM, performances of MORPH, Gauss and

SIGD improve consistently but they stay behind the

performance of the proposed method with the HNM on

all datasets.

In Table 1, average precision values of all methods

are presented. The proposed method achieves the best

acurracy on Camera #2 dataset and performs well in

Camera #1 and #3 datasets (slightly behind the CNN),

while HOG+SVM, PSHOG and CNN methods pro-

vide competitive accuracies comparing to the proposed

method. Among the rest of the methods, BS perform

the worst performance.

8.1.2 Precision, recall and F-Score values at a single

threshold

Since we compare performances of nine different meth-

ods, it is not feasible to assess performances of all these

methods on various thresholds. Among these methods,

we selected three of them for further analysis and com-

parison with the proposed model. In particular, HOG+SVM,

PSHOG, CNN and the proposed method achieves good

results and results are similar to each other. We se-

lected HOG+SVM for comparison. The other method

is DPM+LSVM, which provides similar results compar-

ing to the selective search method. Finally, the worst

performing method, BS is selected for further analysis.

We present the precision, recall and F-Score results at

a single threshold for the overlap area is greater than

25% and 50% separately (i.e. for overlap measure is

greater than 0.25 and 0.5). The threshold value for

each method is determined experimentally on a dif-

ferent validation set. In this experiment, results are

computed without the HNM. Here, the precision is de-

fined as P% = (Pc/Pt) × 100, where Pc is the num-

ber of BB locations correctly predicted and Pt is the

total number of BB locations predicted as belonging

to player class. The Recall (i.e. detection rate) is de-

fined as R% = (Rc/Rt) × 100, where Rc is the num-

ber of BB locations correctly predicted and Rt is the

total number of BB locations that actually belong to
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Table 2 Comparison of the Precision (P%), Recall (R%) and F-score (F%) of the methods when the overlap measure is
greater than 0.25.

Cam. # of BS [7] DPM+LSVM [22] HOG+SVM [21] Proposed Feat.+SVM

Players P% R% F% P% R% F% P% R% F% P% R% F%

1. 4526 84.25% 68.45% 75.53% 91.48% 80.21% 85.48% 98.51% 89.24% 93.65% 99.21% 89.11% 93.89%

2. 4780 78.47% 64.96% 71.08% 90.45% 74.53% 81.72% 98.91% 83.54% 90.58% 97.90% 87.57% 92.45%

3. 2407 79.78% 81.64% 80.70% 84.92% 86.83% 85.86% 93.13% 95.18% 94.14% 94.93% 97.30% 96.10%

Tot. 11713 80.90% 69.73% 74.90% 87.14% 79.98% 83.41% 97.41% 88.13% 92.53% 97.71% 90.16% 93.78%

Table 3 Comparison of the Precision (P%), Recall (R%) and F-score (F%) of the methods when the overlap measure is
greater than 0.5.

Cam. # of BS [7] DPM+LSVM [22] HOG+SVM [21] Proposed Feat.+SVM

Players P% R% F% P% R% F% P% R% F% P% R% F%

1. 4526 51.18% 41.58% 45.89% 66.81% 55.33% 60.53% 76.56% 69.35% 72.78% 79.75% 71.63% 75.47%

2. 4780 39.12% 32.38% 35.44% 52.42% 41.18% 46.13% 76.20% 64.35% 69.77% 74.86% 66.97% 70.69%

3. 2407 55.83% 57.13% 56.47% 44.27% 43.91% 44.10% 63.05% 64.44% 63.74% 66.92% 68.59% 67.75%

Tot. 11713 47.58% 41.02% 44.05% 53.83% 46.03% 49.63% 73.28% 66.30% 69.61% 74.89% 69.10% 71.87%

(a) Camera 1 dataset (b) Camera 2 dataset

(c) Camera 3 dataset (d) Overall performances
Fig. 8 Graphical illustration of the P%, R% and F% of the methods for the overlap masure is greater than 0.25.

the player class. The F-score is a measure of accuracy

that combines precision and recall results as follows:

F% = 2 · ((P% · R%)/(P% + R%)). In this evalua-

tion, all of the measures must be high for a method to

show that it can provide sufficient discrimination and

detection. Table 2 and Figure 8 show the precision, re-

call and F-score results, obtained using each method for

each camera view, when the overlap measure is greater

than 0.25. It is observed that the proposed features with

SVM performs better than the other methods in each

camera dataset. In total, 11713 players are annotated

for testing using these three camera views. In overall,

the proposed method has the highest Precision, Re-

call (i.e. detection rate) and F-Score (i.e. accuracy) as

shown at the bottom of Table 2 and in Figure 8 (d). The

overall accuracy of the proposed method, HOG+SVM

[21], the BS [7], and the DPM+LSVM [22] is 93.78%,

92.53%, 74.90%, and 83.41% respectively. The proposed

method achieves better than other methods because, in

general, it can handle the distance (i.e. players’ scales),

low resolution, as well as the occlusion problems better

than the other methods.

Table 3 and Figure 9 show the precision, recall and

F-score results, obtained using each method for each
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(a) Camera 1 dataset (b) Camera 2 dataset

(c) Camera 3 dataset (d) Overall performances
Fig. 9 Graphical illustration of the P%, R% and F% of the methods for the overlap measure is greater than 0.5.

Table 4 Number of correct detections and detection rates (R%) of the methods in occlusion cases when the overlap measure
is greater than 0.25.

Occlusion # of BS [7] DPM+LSVM [22] HOG+SVM [21] Proposed Feat.+SVM

Cases Players # of Det. R% # of Det. R% # of Det. R% # of Det. R%

No Occ. 10705 7858 73.40% 8323 77.75% 9601 89.68% 9849 92.00%

Partial Occ. 246 63 25.60% 142 57.72% 191 77.64% 180 73.17%

Heavy Occ. 762 247 32.41% 305 40.03% 531 69.68% 532 69.98%

Total 11713 8168 69.73% 8770 74.87% 10323 88.13% 10561 90.16%

Table 5 Number of correct detections and detection rates (R%) of the methods in occlusion cases when the overlap measure
is greater than 0.5.

Occlusion # of BS [7] DPM+LSVM [22] HOG+SVM [21] Proposed Feat.+SVM

Cases Players # of Det. R% # of Det. R% # of Det. R% # of Det. R%

No Occ. 10705 4606 43.03% 6401 59.79% 7292 68.12% 7670 71.65%

Partial Occ. 246 35 14.22% 73 29.67% 151 61.38% 140 56.91%

Heavy Occ. 762 164 21.52% 218 28.61% 323 42.38% 284 37.27%

Total 11713 48.05 41.02% 6692 57.13% 7766 66.30% 8094 69.10%

camera view, when the overlap measure is greater than

0.5. It is again observed that the proposed features+SVM

performs better than the other methods in each camera

dataset. In total, the proposed method has the highest

Precision, Recall and F-Score (i.e. accuracy) as shown

at the bottom of Table 3 and in Figure 9 (d). The overall

accuracy of the proposed method, HOG+SVM [21], the

BS [7], and the DPM+LSVM [22] is 71.87%, 69.61%,

44.05%, and 49.63% respectively. Therefore the accu-

racy of the methods decrease if we restrict the over-

lap area, between the detection bounding box and the

ground truth bounding box, to be greater than 50%.

The reason is that the players’ scales appear to be small

in the datasets and this makes the detection bounding

boxes rather imprecise.

8.2 Occlusion statistics and evaluation

We also annotated the occluded players in our datasets

with two bounding boxes, where one of the BB de-

notes the visible and the other BB denotes the full

player region. For each occluded player, we compute

the fraction of the occlusion (i.e. one minus the visible

player area divided by total player area). Our dataset
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(a) (b)
Fig. 10 Illustration of the detection rates in occlusion cases for the overlap measure is (a) greater than 0.25, and (b) greater
than 0.5.

is divided into three occlusion cases: No occlusion (0%

area occluded), partial occlusion (0-50% area occluded)

and heavy occlusion (over 50% area occluded). Over-

all, there are 11713 players in our dataset, where 10705

players are not occluded, 246 players are partially oc-

cluded and 762 players are heavily occluded. We mea-

sure the performances of each method in different oc-

clusion cases for the overlap area is greater than 25%

and 50% separately (i.e. for overlap measure is greater

than 0.25 and 0.5).

Table 4 shows the number of correct detections and

the detection rates (i.e. Recall) for each method in dif-

ferent occlusion cases and in total, when the overlap

area is greater than 25%. Figure 10 (a) also show the

detection rate (i.e. Recall) for each method in different

cases. It is observed that the proposed method and the

HOG+SVM [21] perform significantly better than the

BS method [7] and the DPM+LSVM [22] in all cases.

In no occlusion case, the proposed method detects 9849

players out of 10705 while the HOG+SVM [21] detects

9601 players. This means that our method can detect

248 (2.32%) more players than the HOG+SVM [21].

In partial occlusion case, the HOG+SVM [21] detects

191 players out of 246 and the proposed method detects

180 players. In partial occlusion case, the difference be-

tween the proposed method and the HOG+SVM [21]

is 11 players (i.e. 4.47%). In heavy occlusion case, our

method and the HOG+SVM [21] performs similarly,

where our method detects 532 players out of 762 and

the HOG+SVM [21] detects 531. In total, the proposed

method can find 10561 players out of 11713 while the

HOG+SVM [21] can find 10323 players. Therefore our

method detects 238 more players (2.03%) than the HOG+SVM

[21]. Overall, the proposed method performs better than

the other methods.

Table 5 shows the number of correct detections and

the detection rates for each method in different occlu-

sion cases, when the overlap area is greater than 50%.

Figure 10 (b) also show the detection rate (i.e. Recall)

for each method in different cases. It is observed that

the proposed method and the HOG+SVM [21] perform

significantly better than the other methods in all cases.

In no occlusion case, the proposed method detects 7670

players out of 10705 while the HOG+SVM [21] detects

7292 players. This means that our method can detect

378 (3.53%) more players than the HOG+SVM [21]. In

partial occlusion case, the HOG+SVM [21] detects 151

players out of 246 and the proposed method detects 140

players. In heavy occlusion case, the HOG+SVM [21]

detects 323 players out of 762 and the proposed method

detects 284 players. In total, the proposed method can

find 8094 players out of 11713 while the HOG+SVM

[21] can find 7766 players. Therefore our method detects

328 more players (2.8%) than the HOG+SVM [21]. In

total, the proposed method performs better than the

other methods, when the overlap measure is greater

than 0.5. The accuracy of the methods decrease if we re-

strict the overlap area, between the detection bounding

box and the ground truth bounding box, to be greater

than 50%. As we explained before, the reason is that

players’ scales appear to be small in the datasets and

this makes the detection bounding boxes rather impre-

cise.

8.3 Computational efficiency

Table 6 shows the average time required for player de-

tection per frame for each camera dataset. Results are

obtained using Matlab 7 on a Windows 7 Operating

System with Intel Core i7-2670, 2.2GHz and 8GB RAM.

It is observed that the BS [7] is more efficient than

the proposed method, the HOG+SVM [21] and the

DPM+LSVM [22]. Although, the proposed approach

is computationally less efficient, it has better accuracy

than the other methods.
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Table 6 Average time required for player detection per frame.

Camera BS [7] DPM+LSVM [22] HOG+SVM [21] Proposed Feat.+SVM

1. 16.78 seconds 34.80 seconds 30.91 seconds 44.79 seconds

2. 18.50 seconds 35.71 seconds 31.79 seconds 42.89 seconds

3. 17.09 seconds 32.67 seconds 27.29 seconds 33.55 seconds

(a) (b) (c)

(d) (e)
Fig. 11 Detection results in a frame from Camera 1 dataset (without Hard Negative Mining). (a) Sample Frame, (b) BS [7],
(c) DPM+LSVM [22], (d) HOG+SVM [21], (e) Proposed Features+SVM.

(a) (b) (c)

(d) (e)
Fig. 12 Detection results in a frame from Camera 2 dataset (without Hard Negative Mining). (a) Sample Frame, (b) BS [7],
(c) DPM+LSVM [22], (d) HOG+SVM [21], (e) Proposed Features+SVM.

8.4 Discussions

The proposed method achieves better player detection

because, in general, it can handle the distance (i.e. play-

ers’ scales), low resolution, as well as the occlusion prob-

lems better than the other methods. For example, in low

resolution cases there are missing edges of an object in

the image. Despite the missing edges the solution of

the proposed diffusion equation in the detector window

can fill inside the object and preserve the shape infor-
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(a) (b) (c)

(d) (e)
Fig. 13 Detection results in a frame from Camera 3 dataset (without Hard Negative Mining). (a) Sample Frame, (b) BS [7],
(c) DPM+LSVM [22], (d) HOG+SVM [21], (e) Proposed Features+SVM.

mation. Therefore, the extracted shape features become

effective. On the other hand, the HOG features [21] are

sensitive to low resolution, and cannot detect players

well in this case. The DPM+LSVM [22] method fails

to detect players because it is difficult to distinguish

and describe the player body parts when the player has

small scale, lower resolution as well as large variations

of body parts. Describing the whole body shape alone

is more effective when the object appears at small scale

and low resolution. The BS method [7] also fails to de-

tect players because of variability of lighting, weather

conditions, low resolution as well as when the players

are very close or occluding each other. We also present

a visual comparison of the proposed method, the BS

[7], the DPM+LSVM [22] and the HOG+SVM [21] on

frames. The comparison is done for each camera view

in Figure 11, 12 and 13. In general, it can be seen that

the proposed method performs better than the other

methods in these frames.

9 Conclusions

We have presented an approach for player detection

with a fixed camera based on a new feature extraction

technique. We compute a binary edge image of a given

frame, and then the detector window scans the edge re-

gions. In each window, we solve a particular diffusion

equation to generate a shape-information image. This

is the key stage and the main contribution in this new

algorithm. Then the shape information image is pro-

cessed to extract scale and rotation invariant features.

A SVM classifier is used to label the player regions. Our

approach is evaluated on three different field hockey

datasets. Results show that the proposed feature ex-

traction is effective, and performs competitive results

compared to the state-of-the-art methods.
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