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Abstract. This paper examines the impact that the choice of local de-
scriptor has on human action classifier performance in the presence of
static occlusion. This question is important when applying human action
classification to surveillance video that is noisy, crowded, complex and
incomplete. In real-world scenarios, it is natural that a human can be
occluded by an object while carrying out different actions. However, it
is unclear how the performance of the proposed action descriptors are
affected by the associated loss of information. In this paper, we evalu-
ate and compare the classification performance of the state-of-art human
local action descriptors in the presence of varying degrees of static oc-
clusion. We consider four different local action descriptors: Trajectory
(TRAJ), Histogram of Orientation Gradient (HOG), Histogram of Ori-
entation Flow (HOF) and Motion Boundary Histogram (MBH). These
descriptors are combined with a standard bag-of-features representation
and a Support Vector Machine classifier for action recognition. We in-
vestigate the performance of these descriptors and their possible com-
binations with respect to varying amounts of artificial occlusion in the
KTH action dataset. This preliminary investigation shows that MBH in
combination with TRAJ has the best performance in the case of par-
tial occlusion while TRAJ in combination with MBH achieves the best
results in the presence of heavy occlusion.

1 Introduction

Analyzing complex and dynamic video scenes for the purpose of human action
recognition is an important task in computer vision. Therefore, extensive re-
search efforts have been devoted to develop novel approaches for action-based
video analysis. Action oriented event detection is an important component for
many video management applications especially in surveillance and security [13],
sports video [8], and video archive search and indexing domains.

In security applications CCTV footage can be analysed in order to index
actions of interest and enable queries relating to actions such as anti-social or
criminal behaviour or to monitor crowd volume or agression. This is an especially
challenging example of human action recognition due to the volume and quantity



of video and the potentially low level of visual distinctiveness between the actions
of interest. This can be seen in the performance of systems used in the TRECVid
surveillance event detection (SED) task that has been operating for the last
6 years using the iLIDS dataset from the UK Home Office to annotate video
segments with actions such as CellToEar, Embrace, ObjectPut, PeopleMeet,
PeopleSplitUp, PersonRuns and Pointing [15]. Some of the unique challenges of
this dataset are discussed in [14].

Fig. 1: Sample shots from TRECVid SED dataset show occlusion

Figure 1 shows some example frames from the TRECVid SED dataset il-
lustrating occlusion of the main actor by other objects. Temporal occlusion by
other actors (e.g., walking in front of someone who is using a cell phone) is also
common. It is difficult to judge the extent of occlusion or the impact of the
missing or mis-leading feature descriptors on the performance of human action
classifiers trained on example data. Given the size of the TRECVid-SED dataset
and the low accuracy levels thus far achieved, we have chosen to use the KTH
action dataset to conduct preliminary investigations into the impact of occlu-
sion of human action classification using local descriptors. Although a relatively
simple dataset, KTH provides a*“ level of playing field ” for testing descriptors.

Despite the fact that existing action description methods have been tested
on both artificial and real world datasets, there is no significant study that is
directly focused on the problem of occlusion. Occlusion is a challenging problem
in real-world scenarios where there are usually many people located at different
positions and moving in different individual directions making it difficult to find
effective descriptors for higher level analysis.

There are two main classes of human action description methods: global and
local. The global methods [4][20] represent the actions based on holistic informa-
tion about the action and scene. These methods often require the localization of
the human body through alignment, background subtraction or tracking. These
methods perform well in controlled environments, however exhibit poorer per-
formance in the presence of occlusion, clutter in the background, variance in
illumination, and view point changes. Local methods exist [9][12][6] that are less
sensitive to these conditions. The local descriptors capture shape and motion
information in the neighbourhoods of selected points using image measurements
such as spatial or spatio-temporal image gradients and optical flow.

In this paper, we investigate the performance of state-of-art local descriptors
for human action recognition in the presence of varying amounts of occlusion.
Our objective is to understand how missing action features, i.e. because of static



occlusion, affect action classification performance. In order to model static oc-
clusion, we occlude human action regions with a rectangular shaped, uniform
colour object, so that the local descriptors are not extracted within that region.

We evaluate and compare four different local descriptors TRAJ [18], HOG
[6], HOF [12], MBH [7] and their possible combinations. These descriptors are
combined with a standard bag-of-features representation and a Support Vector
Machine (SVM) classifier for action recognition. Our experiments are conducted
on the KTH action dataset, and results show that the MBH in combination
with TRAJ performs the best in the presence of partial occlusion while TRAJ
in combination with MBH achieves the best results in the case of heavy occlusion
(greater than 50% of the actor).

To our knowledge, evaluation and comparison of classification performance of
local action description methods, in the presence of occlusion, has not been done
in the past. However, several authors have evaluated the impact of occlusion on
their own work. Weinland et al. [19] showed the robustness of his proposed work
under occlusion and view-point changes using artificially imposed occlusions on
the KTH and Weizmann datasets. Dollar et al. [10] evaluated the impact of oc-
clusion in terms of pedestrian detection. Additionally, a number of key survey
papers in human action recognition [16] [2] [1] stated the necessity of occlu-
sion tolerant action recognition methods. In particular, Poppe [16] wrote ”the
question [of] how to deal with more severe occlusions has been largely ignored”.

The rest of the paper is organized as follows: Section 2 explains the local
action descriptors included in our evaluation. Section 3 presents the experimental
setup describing how synthetic occlusion is applied to the KTH dataset and
evaluation framework. Finally, Section 4 presents and discusses our results prior
to the conclusion.

2 Local Action Descriptors

2.1 Trajectory descriptor (TRAJ)

The Trajectory descriptor is proposed in the work of Wang et al. [18]. The de-
scriptor encodes the shape characteristic of a given motion trajectory. Since mo-
tion is an important cue in action recognition, this representation allows motion
characteristics to be exploited. The descriptor is straight-forward to compute us-
ing the points sampled on the trajectory in the image domain. Given a trajectory
of length L, the shape is described by a descriptor vector S :
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where AP, = (Pyy1 — Pi) = (2441 — %4, Y141 — ¥¢). In our experiment, the
trajectory length was chosen to be L = 15 video frames as recommended in [18].



2.2 The HOG/HOF descriptor

The HOG/HOF descriptors were introduced by Laptev et al. in [12]. To charac-
terize local motion and appearance, the authors compute histograms of spatial
gradient and optical flow accumulated in space-time neighbourhoods of the se-
lected points. The points can be detected using any interest point detectors [11]
[9]. In our experiment, these points are selected along the motion trajectory as
in [18]. For the combination of HOG/HOF descriptors with interest point de-
tectors, the descriptor size is defined by Ax(o) = Ay(o) = 180, At(r) = 8.
Each volume is subdivided into a n, X n, X n; grid of cells; for each cell, 4-
bin histograms of gradient orientations (HOG) and 5-bin histograms of optical
flow (HOF) are computed. Normalized histograms are concatenated into HOG
and HOF as well as HOG/HOF descriptor vectors and are similar in spirit to
the well-known SIFT descriptor. In our evaluation we used the grid parameters
ng = n, = 3,n; = 2 as suggested by the authors [12].

2.3 The Motion Boundary Histogram (MBH) descriptor

Dalal et al. [7] proposed the Motion Boundary Histogram (MBH) descriptor for
human detection, where derivatives are computed separately for the horizontal
and vertical components of the optical flow. The descriptor encodes the rela-
tive motion between pixels. The MBH descriptor separates the optical flow field
I, = (I;,1,) into its  and y component. Spatial derivatives are computed for
each of them and orientation information is quantized into histograms, similarly
to the HOG descriptor. We obtain an 8-bin histogram for each component, and
normalize them separately with the Lo norm. Since MBH represents the gra-
dient of the optical flow, constant motion information is suppressed and only
information about changes in the flow field (i.e., motion boundaries) is kept. In
our evaluation, we used the MBH parameters used in the work of Wang et al.
[18].

3 Experimental Setup

3.1 Dataset

The KTH actions dataset [3] consists of six human action classes: walking, jog-
ging, running, boxing, waving, and clapping. Each action class is performed
several times by 25 subjects. The sequences were recorded in four different sce-
narios: outdoors, outdoors with scale variation, outdoors with different clothes
and indoors. The background is homogeneous and static in most of the sequences.

In total, the data consists of 2391 video samples. We follow the original ex-
perimental setup of the dataset publishers [3]. Samples are divided into test set
(9 subjects: 2,3,5,6,7,8,9,10, and 22) and training set (the remaining 16 sub-
jects). We train and evaluate a multi-class classifier and report average accuracy
over all classes as the performance measure. The average accuracy is a commonly
reported performance measurement when using the KTH dataset [3].
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Fig.2: The extracted trajectory features are represented by each descriptor: TRAJ,
HOG, HOF and MBH. Then samples from training videos are used to generate the
visual dictionary for respective descriptors. The test video is represented by the Bag-
of-Features (BOF) approach using the built visual dictionary. For the case of descriptor
combination such as TRAJ+MBH or HOG+HOF, the respective BOF histograms are
concatenated together in order to train a SVM classifier.

Fig.3: The sample shots where the different degree of random occlusion is applied
into KTH video sequence. The red boundary is manually drawn in order to set an
action boundary for each action performer. The green rectangles are occlusion regions
randomly selected with 4 different occlusion sizes: 10%, 25%, 50% and 75% of the active
region

3.2 Synthetic Occlusion

Occlusion may occur due to static and dynamic occluding objects. For example:
If an action performer is occluded by a moving object like a moving car or a
person, it is considered as dynamic occlusion. On the other hand, the occluding
object may be static like a building or a table then in which case an occlusion
represents static occlusion.

In our experiment, we focus our attention on static occlusion. Our objective
is to understand how the missing action features, i.e. because of static occlusion,
affect the action classification performance. In order to model static occlusion, we
occlude human action regions with rectangular shaped uniform colour objects,
so that the action descriptors are not extracted within that regions. The uniform
colour ensures no interest points are detected.

Since the KTH action dataset does not contain any occlusion, we have in-
tegrated random static occlusion only for the test set sequences. First, action



boundaries are manually selected in each test sequence as a bounding box as
shown in red boundary in Figure 3 . The action boundary (AB) should be se-
lected with a specific height Hap, width W, position (xp, yap), in order to
accommodate the region of video where the action is performed. Once we label
the action boundaries for all test video sequences, occlusion bounding box (OB)
is automatically generated within the action boundary region specified by H 4,
WaB,ap, yap with varying sizes of occlusion area A(OB). The occlusion po-
sition is randomly generated and remained static for each test sequence. In our
experiment, we have chosen the occlusion areas A(OB) to be 10%, 25%, 50%
and 75% of the action boundary area A(AB) as shown in Figure 3. In given ac-
tion boundary AB and occlusion percentage Occ%, the parameters Hog, Wop,
ToB, Yop of the occlusion bounding box OB are randomly selected as follows:

VHop € [Hap — (1 — Occ%) x Hap, Hap] (2)
VWop € [Wap — (1 — Occ%) x Wap, Wag] (3)
Vrop € [vap,zaB + (Wap — Wog))] (4)
Yyos € [Yan,yas + (Hap — Hop)] (5)

where Occ% = ﬁggg; and Hap, Wap, (tap,yap) is height, width and top-
left corner coordinate of action the boundary box, AB, whereas Hop, Wop,
(zoB,yop) is height, width and top-left corner coordinate of the occlusion

boundary box, OB, and Hog, Wog,zoB,yoB € N.

3.3 Evaluation framework

We adopted the approach of Wang et al. [18] as a video processing pipeline
to evaluate spatio-temporal features under different occlusion settings. This ap-
proach extracts motion trajectories from the video and generates a set of trajec-
tory with length of L = 15 frames.

We compute TRAJ, HOG, HOF and MBH descriptors for each motion trajec-
tory. For volumetric features , HOG, HOF and MBH , we construct 3D volumes
along the trajectory. The size of the volume is N x N pixels and L frames, with
N =32 and L = 15 in our experiments. The feature vector dimensions of HOG,
HOF, MBH and TRAJ are respectively 96, 108, 192 and 30.

In order to represent human actions, we build a Bag-of-Features (BoF) model
based on the four different types of descriptors. The Bag-of-Feature representa-
tion for each type of descriptor (i.e. HOG, HOF, MBH and TRAJ) is obtained
as follows: First, we cluster a subset of 250,000 descriptors sampled from the
training video with the mini batch K-Means algorithm proposed by Sculley [17].
In our experiments, the number of clusters is set to £ = 4,000, the mini path size
is 10,000 and the number of iterations for clustering is 500. These parameter
values are selected empirically to obtain good results and avoid extensive com-
putations. Then each descriptor type is assigned to its nearest cluster centroid
using the Euclidean distance to form a co-occurrence histogram.



Recall Precision

Descriptor Combination| No | Partial Occ | Heavy Occ || No | Partial Occ | Heavy Occ

TRAJHOG|HOF|MBH| Occ. | 10% | 25% | 50% | 75% || Occ. | 10% | 25% | 50% | 75%

V' [91.2%|89.1%|87.3%|71.8%(49.1%/91.6%89.8%|88.2%|77.5%|68.3%

v 87.0%|87.2%|79.7%68.5%|45.8%||88.6%|88.0%|81.4%|73.9%63.6%

v v [91.2%|89.1%|87.7%|76.9%50.0%|/91.8%89.8%|88.5%|81.7%|67.6%

v 74.5%169.4%162.5%46.8%|26.9%||182.0%|80.8%|74.2%|65.3%|60.4%

v v [89.8%|88.7%|84.0%|70.4%46.8%/90.5%89.6%|85.8%|76.7%|73.9%

v v 88.4%187.2%|81.1%|72.2%|44.4%||89.8%88.7%|83.2%|77.3%69.1%

v v V' [89.8%|89.6%|84.9%|74.1%(49.1%/90.7%90.6%|86.4%|79.6% | 74.4%

v 87.4%|84.9%81.5%|79.6%|57.0%||88.7%|86.6%|84.1%|84.3%|73.1%

v V' 192.1%(93.4%|86.7%|76.9%56.5%|/92.5%93.7%|88.1%|82.3%|75.0%

v v 91.2%|88.2%182.9%|75.5%|52.8%]|91.8%|89.0%84.8%|80.5%| 72.0%

v v V' 192.6%/91.5%|86.2%|76.9%52.3%/92.9%92.0%|87.6%|81.2%|70.9%

v v 89.8%|87.8%|81.5%|74.1%|51.9%]|90.9%89.7%|84.9%|80.8%|72.3%

v v V' 191.6%/90.1%|84.8%|73.6%(51.9%/92.1%90.9%|86.7%|80.2%|75.9%
Table 1: The precision and recall rate for different combination of our evaluating
descriptors. Here, the precision is defined as P% = (T}.{r%) x 100,where TP is
true positive, FP is false positive. The Recall (i.e. detection rate) is defined as
R% = TPZ%) X 100, where TP is true positive and FN is false negative. In this

table, all of the measures must be high for a method to show that it can provide
sufficient discrimination and classification.

Descriptor Combination|| No |Partial Occlusion
Rank|TRAJ/[HOG|HOF|MBH]|| Occ. | 10% 25% Avg.
1 v v 1|92.0%93.4%| 86.7% |/90.1%
2 v v v [192.5%(91.5%| 86.2% |/88.9%
3 v v ||191.1%|89.1%| 87.7% |/88.4%
4 V' ]|191.1%|89.0%| 87.2% |/88.1%
5 v v v v ]|91.5%(90.5%| 84.8% ||87.7%
6 v v v [191.6%(90.1%| 84.9% ||87.5%
7 v v v [189.6%(89.5%| 84.9% |187.2%
8 v v ||89.6%|88.5%| 84.0% |/86.2%
9 v v 91.1%|88.4%| 83.1% ||85.7%
10 v v v 90.7%|88.8%| 82.2% ||185.5%
11 v v 89.8%|87.8%| 81.6% ||84.7%
12 v v 88.3%|87.3%| 81.1% ||84.2%
13 v 86.9%(87.3%| 79.8% ||83.5%
14 v 87.3%|85.0%| 81.7% | 83.3%
15 v 74.0%|68.6%| 59.4% || 64.0%

Table 2: The ranking is computed on the F-Score measure. The F-score is a measure
of accuracy that considers precision and recall rates to compute the score as follows:
F% =2x %m. This table shows the ordered list of descriptor combination
in terms their F-Score measure in partial occlusion case. The higher value indicates

the better performance




For combining descriptors, we concatenate the co-occurrence histogram of
respective descriptors to generate a feature vector to train a SVM classifier. In
our evaluation, we train 15 different classifiers for each combination of our four
descriptors.

3.4 Classification

A multi-class support vector machine (SVM) with a Gaussian radial basis func-
tion (RBF) kernel is used for classification. We apply a grid searching algorithm
to learn the optimal values of the penalty parameter (C') in SVM and the scaling
factor (y) in Gaussian RBF kernel with the KTH dataset training set (without
any occlusion). The grid searching is performed using 10 fold cross-validation.
The optimal parameter values are : C' = 1 and v = 32 x 10~2. These parameters
are fixed throughout our evaluation of the local descriptors and their possible
combinations.

Descriptor Combination|| No |Heavy Occlusion
Rank| TRAJ[HOG|HOF|MBH]|| Occ | 50% 5% Avg.
1 v 87.3%(79.2%| 56.1% ||67.7%
2 v v [192.0%|76.7%| 57.2% ||66.9%
3 v v v []92.5%|76.6%| 52.7% ||64.7%
4 v v 91.1%|74.9%| 52.8% ||63.8%
5 v v v [|91.6%|73.7%| 53.0% ||63.3%
6 v v ||91.1%|77.0%| 49.7% |/63.3%
7 v v 89.8%|74.0%| 51.5% |/62.8%
8 v v v [|89.6%|74.3%| 50.8% ||62.5%
9 v v v v ]|91.6%|73.8%| 50.2% |/62.0%
10 v |91.1%|72.0%| 50.1% |(|61.1%
11 v v v 90.7%|74.3%| 47.8% |/61.1%
12 v v |189.6%|70.8%| 48.5% |(|59.7%
13 v v 88.3%|72.3%| 45.3% ||58.8%
14 v 86.9%68.3%| 45.8% ||57.0%
15 v 74.0%(42.2%| 22.5% ||32.3%

Table 3: Here shows the F-Score based ranking in heavy occlusion case for local action
descriptors and their possible combinations.

4 Experimental Results

Table 2 shows the ranking of different combinations of descriptors in the partial
occlusion case based on F-Score. The best three combinations are TRAJ+MBH
(90.1 %), TRAJ+HOF+MBH (88.9%) and HOF+MBH (88.4%). The worst per-
formance is with HOG and HOF features. HOG descriptor obtained 64.3% and
HOF descriptor obtained 83.3% and their combination is 83.5%.
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Fig. 4: The graphical illustration of accuracy for partial and heavy occlusion cases. (a)
The partial occlusion case. The ranking number corresponds to Table 2 (b) The heavy
occlusion case. The ranking number corresponds to Table 3

The heavy occlusion ranking is presented in Table 3. TRAJ (67.7%), TRAJ+MBH
(66.9%), TRAJ+HOF+MBH (64.7%) combinations perform best. The HOG,
HOF and their combination perform poorly. Generally, the best descriptors are
TRAJ, MBH and their combination. They consistently outperform any other
combination for different scales of occlusion area in our experiments.

We now present experimental results for various descriptor combinations.
We use multi-class classification where we apply the one-against-rest approach
and compare the performance based on precision, recall and F-score. The scores
are reported as an average of the 6 action classes. In order to measure the
occlusion impact, we compute the above mentioned scores at four different cases
of occlusion: 10%, 25%, 50% and 75% occlusion of the action area. We also
group the cases into partial occlusion (10% 25% occluded) and heavy occlusion
(50% 75% occluded). The classifier is trained with non-occluded training data.
Therefore all occlusion cases are classified with the same trained classifier.

Table 1 shows the recall and precision scores for all combinations of the de-
scriptors we evaluated. The recall is calculated for partial and heavy occlusion
scenarios. In partial occlusion, MBH and its combination with other descriptors
performed significantly better than other combinations. Especially the combi-
nation of TRAJ + MBH outperforms the without-occlusion case by 2%. This
can be explained by the fact that occlusion also acts like a noise filtering. It
increases the discriminative power of the representation. Regarding the heavy
occlusion, the best performance is shown with all four combinations of trajectory
descriptor. It makes the trajectory descriptor particularly suitable for scenarios
with large occlusions. For example, with 75% occluded area, TRAJ individu-
ally obtained 57% recall rate which is the highest score compared to any other
combination where most of them barely reached 50%.

In terms of precision, the same trend is observed in both occlusion scenarios.
The partial occlusion is predominantly handled significantly better than others



when there is combination of MBH descriptors. For heavy occlusion, TRAJ +
MBH descriptors topped the precision rank.

The poorest performance is exhibited by HOG and its combination with
other descriptors. In both partial and heavy occlusion cases, the HOG descrip-
tor obtained the worst precision and recall rate. Therefore it is unsuitable to
use HOG even with other occlusion tolerant features like MBH or TRAJ as it
significantly decreases the performance.
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Fig. 5: Confusion matrix for the un-occluded KTH dataset

5 Discussion

The experimental results confirm that the motion based descriptors (TRAJ,
HOF and MBH) are more discriminative when recognizing human actions in
an occluded scene. Among the motion based descriptors, MBH and TRAJ de-
scriptors significantly outperform other descriptors. In the partial occlusion case,
MBH is the best choice, whereas the TRAJ descriptor is good for heavy occlu-
sion. Texture or appearance based descriptors (HOG) performed poorly in the
presence of occlusion because the objects shape undergoes significant changes
due to the occlusion artefact. We observed that combining MBH and TRAJ
descriptors outperforms other possible combinations in both partial and heavy
occlusion.

The performance under very heavy occlusion in particular is surprising. While
showing a significant decrease in performance compared with no occlusion, av-
erage precision over the six actions of greater than 60% is still achieved. We
speculate that this is due to the extremely simplified nature of the KTH dataset,
a facet noted in a recent review of datasets for human action recognition [5] that
described the unrealistic nature of KTH. The differentiation between classes is
high (see the confusion matrix for the baseline classification with no occlusion,
Figure 5 ) and the area of the action boundary is relatively large. Therefore
actions can be successfully differentiated by the multi-class classifier using only
a small number of local descriptors.



Performance with heavy occlusion in real-world surveillance datasets is pre-
dicted to be very poor. However the strong performance of the MBH descriptor
either alone or combined with TRAJ is likely to transfer to the more complex
scenes.

6 Conclusion and Future Work

We have presented an evaluation and comparison framework for the state-of-
art human local action descriptors. We evaluated four different local action
descriptors which are Trajectory (TRAJ), Histogram of Orientation Gradient
(HOG),Histogram of Orientation Flow (HOF) and Motion Boundary Histogram
(MBH). These descriptors are experimented with a standard bag-of-features rep-
resentation and a Support Vector Machine classifier. We investigate the per-
formance of these descriptors and their possible combinations with respect to
varying amount of artificial occlusion in the KTH action dataset. Results show
that the MBH and its combination with TRAJ achieve the best performance in
partial occlusion. TRAJ and its combination with MBH perform the best results
in the presence of heavy occlusion.

Indictations regarding the relative importance and robustness of local action
descriptors will assist in designing systems that are more resilliant to the fre-
quent occurences of occlusion. Particularly in developing classifiers for the more
complex actions and scenes found in surveillance and security applications. We
hope that weighting local action descriptors in scenarios where higher levels of
occlusion are likely (such as the scenes shown in figure 1) will improve the overall
accuracy of the classifier.

This work demonstrated that the choice of local descriptor has an impact on
the classifier performance in the presence of occlusion. Further work will explore
how this will transfer to real-world applications. Particularly we will expand our
evaluation with more descriptors, as well as real-world datasets like TRECVid-
SED [15] and Hollywood [11] with examples of realistic occlusion.
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