68 research outputs found

    Nanoporous carbon/WO3 anodes for an enhanced water photooxidation

    Get PDF
    This work provides new insights in the field of applied photoelectro chemistry based on the use of nanoporous carbons as additives to tungsten oxide for the photooxidation of water under potential bias. Using a nanoporous carbon of low surface functionalization as additive to WO3 we have shown the dependence of the photochemical oxidation of water with the wavelength of the irradiation source. Photoelectrochemical responses obtained under monochromatic illumination show a significant increase in the incident photon-to-current conversion efficiency (IPCE) values for electrodes featuring up to 20 wt% carbon additive. Photoelectrochemical transient responses also show a sharp potential dependence, suggesting that the performance of the electrodes is strongly influenced by the carrier mobility and recombination losses. Despite the modest IPCE values of the W/NC electrodes (due to high bulk recombination and poor electron transport properties of the electrodes), our data shows that the incorporation of an optimal amount of nanoporous carbon additive to WO3 can enhance the carrier mobility of the semiconductor, without promoting additional recombination pathways or shadowing of the photoactive oxide.COA thanks the financial support of the European Research Council through a Consolidator Grant (ERC-CoG-648161-PHOROSOL) and the Spanish MINECO (grants CTM2014/56770-R, CTQ2013-48280-C3-3-R). VC and DJF kindly thank the UK Catalysis Hub for resources and support provided via the membership of the UK Catalysis Hub Consortium and funded by EPSRC (grants EP/K014706/1, EP/K014668/1, EP/K014854/1, EP/K014714/1 and EP/M013219/1). AGB thanks her PhD fellowship (BES-2012-060410) and VC thanks the UK National Academy and the Royal Society by the support though the Newton International Fellows program

    Oxygen reduction reaction at La<sub>x</sub>Ca<sub>1-x</sub>MnO<sub>3</sub> nanostructures: interplay between A-site segregation and B-site valency

    No full text
    The mean activity of surface Mn sites at LaxCa1-xMnO3 nanostructures towards the oxygen reduction reaction (ORR) in alkaline solution is assessed as a function of the oxide composition. Highly active oxide nano-particles were synthesised by an ionic liquid-based route, yielding phase-pure nanoparticles, across the entire range of compositions, with sizes between 20 and 35 nm. The bulk vs. surface composition and structure are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). These techniques allow quantification of not only changes in the mean oxidation state of Mn as a function of x, but also the extent of A-site surface segregation. Both trends manifest themselves in the electrochemical responses associated with surface Mn sites in 0.1 M KOH solution. The characteristic redox signatures of Mn sites are used to estimate their effective surface number density. This parameter allows comparing, for the first time, the mean electrocatalytic activity of surface Mn sites as a function of the LaxCa1-xMnO3 composition. The ensemble of experimental data provides a consistent picture in which increasing electron density at the Mn sites leads to an increase in the ORR activity. We also demonstrate that normalisation of electrochemical activity by mass or specific surface area may result in inaccurate structure–activity correlations

    The role of growth directors in controlling the morphology of hematite nanorods

    Get PDF
    The control of the growth of hematite nanoparticles from iron chloride solutions under hydrothermal conditions in the presence of two different structure promoters has been studied using a range of both structural and spectroscopic techniques including the first report of photo induced force microscopy (PiFM) to map the topographic distribution of the structure-directing agents on the developing nanoparticles. We show that the shape of the nanoparticles can be controlled using the concentration of phosphate ions up to a limit determined to be ~6 × 10−3 mol. Akaganéite (β-FeOOH) is a major component of the nanoparticles formed in the absence of structure directors but only present in the very early stages (< 8 h) of particle growth when phosphate is present. The PiFM data suggest a correlation between the areas in which phosphate ions are adsorbed and areas where akaganéite persists on the surface. In contrast, goethite (α-FeOOH) is a directly observed precursor of the hematite nanorods when 1,2-diamino propane is present. The PiFM data shows goethite in the center of the developing particles consistent with a mechanism in which the iron hydroxide re-dissolves and precipitates at the nanorod ends as hematite

    Strain Effects on the Oxidation of CO and HCOOH at Au-Pd Core-Shell Nanoparticles

    Get PDF
    The mechanism of CO and HCOOH electrooxidation in an acidic solution on carbon-supported Au–Pd core–shell nanoparticles was investigated by differential electrochemical mass spectrometry and in situ Fourier transform infrared (FTIR) spectroscopy. Analysis performed in nanostructures with 1.3 ± 0.1 nm (CS1) and 9.9 ± 1.1 nm (CS10) Pd shells provides compelling evidence that the mechanism of adsorbed CO (COads) oxidation is affected by structural and electronic effects introduced by the Au cores. In the case of CS10, a band associated with adsorbed OH species (OHads) is observed in the potential range of CO oxidation. This feature is not detected in the case of CS1, suggesting that the reaction follows an alternative mechanism involving COOHads species. The faradaic charge associated with COads oxidation as well as the Stark slope measured from FTIR indicates that the overall affinity and orbital coupling of CO to Pd are weaker for CS1 shells. FTIR spectroscopy also revealed the presence of HCOOads intermediate species only in the case of CS1. This observation allowed us to conclude that the higher activity of CS10 toward this reaction is due to a fast HCOOads oxidation step, probably involving OHads, to generate CO2. Density functional theory calculations are used to estimate the contributions of the so-called ligand and strain effects on the local density of states of the Pd d-band. The calculations strongly suggest that the key parameter contributing to the change in mechanism is the effective lattice strain

    Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes

    Get PDF
    A detrimental competition between the urea oxidation reaction (UOR) and oxygen evolution reaction is identified. Strategies are proposed to alleviate such competition and boost the performance of the UOR and other organic compound oxidation reactions
    • …
    corecore