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ABSTRACT The electrochemical activity towards the oxygen reduction reaction (ORR) of carbon 

supported Ba0.5Sr0.5CoxFe1-xO3-δ electrodes particles is studied for the first time as a function of 

chemical composition (1<x<0). Highly crystalline Ba0.5Sr0.5CoxFe1-xO3-δ particles with the full 

compositional range were synthesized by an ionic-liquid route, leading to a high degree of phase 

purity. The structure and composition of the materials were investigated by quantitative XRD and 

EDX. Electrochemical studies in oxygen-saturated alkaline solutions show that the overall 

reactivity of the catalyst supported on mesoporous carbon increases as the Co content increases 

above 50%. DFT calculations, based on the structural parameter obtained from XRD refinements, 

show that the oxygen-vacancy formation energy decreases as the Co content increases. Oxygen 

vacancies lead to a higher electron density at the Co atoms, which are identified as the key ORR 

active sites. 
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1. INTRODUCTION 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ is a well-studied perovskite material which plays an important role as 

oxygen reduction catalysts in solid oxide fuel cells1-3 as well as oxygen permeable membranes.4, 5  

In recent years, several high profile reports have suggested that oxide materials can also be utilized 

as catalysts for the oxygen evolution (OER) and oxygen reduction reactions (ORR) in alkaline 

solutions.6-10 Shao-Horn and co-workers proposed that perovskite materials featuring close to 

single eg orbital occupancy exhibit optimum oxygen binding energies for catalyzing these 

processes.7 Ba0.5Sr0.5Co0.8Fe0.2O3-δ, commonly referred to as BSCF, fulfills this criterion which 

was used to rationalize their high OER activity, although later studies have shown that the surface 

composition of the catalysts is compromised under operational conditions.11, 12 Fabbri and co-

workers evaluated the activity of the same material for ORR, concluding that the activity towards 

the 4-electron process is relatively modest.13 This group also reported that ORR activity can be 

enhanced by preparing composite electrodes with acetylene black carbon, which was rationalized 

in terms of an increase in the electron density at the Co sites induced by the carbon material.9, 10 

Other studies have suggested that thermal treatment of Ba0.5Sr0.5Co0.8Fe0.2O3-δ at 950 °C under an 

oxygen atmosphere leads to activity improvements due to the removal of spinel phases from the 

surface of the material.14 

In addition to the eg orbital occupancy descriptor,7 the electrocatalytic activity of transition 

metal  oxides have also been described in terms of the whole d orbital occupancy15, 16 and the 

number of outer electrons.17, 18 More recently, we have proposed that changes in oxidation state at 

the B-site in a range close to the formal ORR potential are linked to the high catalytic activity of 

materials such as Mn-oxides,19, 20 a view that has also been discussed in other works.21, 22 
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Correlation between catalytic activity and changes of redox state in-operando has also been 

considered for OER in the case of Ir/Ru oxides23 and (Ni,Fe)OOH.24  

In this work, we describe for the first time the activity of Ba0.5Sr0.5CoxFe1-xO3-δ particles 

towards the ORR as a function of the cation ratio in the B-site. In particular, we shall identify the 

most active B-site composition for the ORR and identify key guiding principles for manipulating 

the reactivity of these complex materials. Although aspects such as oxygen vacancy formation and 

migration energies have been correlated with the chemical composition of these materials,25-28 this 

report focuses on the room temperature catalytic activity. A route based on ionic liquid/cellulose 

mixtures is described resulting in the formation of phase pure particles with very high control over 

composition. Structural parameters such as lattice constants, atomic positions and site occupancies 

were determined for the different compositions from quantitative analysis of XRD patterns. This 

structural information was used as basis for calculating oxygen vacancy formation energy (EVo) 

under the DFT supercell formalism. We conclude that increasing Co content (x) leads to an 

increase in the lattice constant of the cell, which is consistent with a lower Co valency and a 

decrease in EVo. As the electron density in the Co site increases, particularly in the case of x > 0.5, 

the activity towards ORR increases.  

2. EXPERIMENTAL SECTION 

Ba0.5Sr0.5CoxFe1-xO3-δ powders were synthesized using an ionic liquid/cellulose system.19, 29, 30 1 

mL of 0.1 M solution was prepared by adding stoichiometric amounts of Ba(NO3)2 (Sigma-

Aldrich), Sr(NO3)2 (Sigma-Aldrich), Co(NO3)2·6H2O (Sigma-Aldrich) and Fe(NO3)3·9H2O 

(Sigma-Aldrich). The solution was then mixed with 1 mL of 1-ethyl-3-methylimidazolium acetate 

(Sigma), and heated at 80 °C for 3 h. Then, 100 mg of microcrystalline cellulose (10 wt%, Avicel) 
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was added under strong stirring until a complete dissolution was achieved forming a homogeneous 

gel (within 1 -2 minutes given the high solubility of cellulose in the ionic liquid). The gel obtained 

was calcined immediately after preparation in air for 2 h at 950ºC with a 5°C min-1 heating rate. 

The morphology and composition of the oxides were investigated with scanning electron 

microscope JEOL SEM 5600 LV with an EDS analyser. EDX mapping was performed with X-

max 80 Oxford instruments detector which has a large area sensor operated with high resolution 

acquisition parameters over large number of pixel (4096) and high dwell time for collection (100 

microseconds per pixel). These conditions ensures a good overlap between element distribution 

and topography. X-ray diffraction patterns were obtained with a Bruker AXS D8 Advance 

diffractometer featuring a CuKα radiation source (λ = 0.154 nm). Specimens for XRD were 

prepared by first milling the powder with agate mortar and pestle and then sieving the powder 

through a 50 m mesh. The powder were then pressed in PMMA specimen holder with a 

cylindrical cavity (internal diameter: 25 mm and 1 mm depth), with clean glass slide, for mounting 

in diffractometer.  Quantitative structure refinements were performed on the XRD patterns by the 

Rietveld method using Fullprof software suite.31 Pseudo-Voigt functions were used as fitting 

functions. The thermal parameters were confined to a fixed range, while background polynomial 

functions were kept up to the sixth order. 

Electrodes were prepared by a two-step drop-casting process. Controlled amounts of an ink 

containing Vulcan and Na+-exchanged Nafion® (5 wt.%, Sigma-Aldrich) are deposited onto the 

glassy carbon disk, followed by drop-casting an aqueous suspension of the oxide. Keeping the 

oxide and carbon in separate suspensions allows visualizing the homogeneity of the suspensions 

prior to the drop-casting steps. The final loading onto each electrode was 250 µgOXIDE cm-2, 50 

µgVULCAN cm-2 and 50 µgNAFION cm-2.19  
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Electrochemical measurements were conducted in a three-electrode cell using a rotating 

ring-disk electrode (RRDE) fitted to an ALS rotation controller and connected to CompactStat 

bipotentiostat (Ivium). The RRDE electrode consisted of 4 mm glassy carbon disk surrounded by 

a Pt ring. The collection efficiency was experimentally determined to be 0.4. The electrochemical 

cell incorporated a Hg/HgO (1 M NaOH, IJ Cambria) placed on a Luggin capillary as reference 

electrode. To facilitate the discussion, the potentials throughout this work have been quoted versus 

a RHE. Experiments were carried out at room temperature in 0.1 M KOH saturated with high 

purity O2 (BOC). Solutions were prepared with high purity water from a Milli-Q system (≥ 18.2 

MΩ). 

Ab-initio DFT calculations were performed using the CASTEP code with Generalised 

Gradient Approximation-Perdew Burke Ernzerhof exchange-correlation functional and 

pseudopotentials with electronic configurations: Ba (5s2 5p6 6s2), Sr (4s2 4p6 5s2), Co (3d8 4s1), Fe 

(3d7 4s1), O (2s2 2p6)), have been employed.32  A 40 atom supercell (expanding the unit cell twice 

all the three axis) was used with fixed lattice parameter estimated from the XRD quantitative 

structural refinements. During calculations, a 4x4x4 k-point grid is created under Monkhorst-Pack 

scheme and the energy cut-off was set to 520 eV. O2 molecule binding energy and bond length are 

then calculated to be 5.27 eV and 1.27 Ǻ, respectively, which are close to experimental values of 

5.12 eV and 1.29 Ǻ, respectively.33 Furthermore, formation energies and atomic charges in our 

study are in good agreement with the values obtained using GGA+U functional for x = 0.8 as 

reported by Zhang and Bristowe.34  These results provide an indication of the accuracy of our 

approach. The ion-charges at the B-site atoms adjacent to the oxygen vacancy centre were 

calculated using the Bader method.35 
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3. RESULTS AND DISCUSSION 

The synthesis of Ba0.5Sr0.5CoxFe1-xO3-δ particles was initiated by dissolving appropriate 

amounts of Ba(NO3)2, Sr(NO3)2, Co(NO3)2·6H2O and/or Fe(NO3)3·9H2O into 1-ethyl-3-

methylimidazolium acetate. The metal containing ionic-liquid solution is heated to 80 °C for 3 h, 

followed by the addition of microcrystalline cellulose to form a gel, which is finally calcined at 

950 ºC for 2h. This methodology has been adapted from previous studies targeting the synthesis 

of phase pure lanthanides.19, 29, 30 Further details of the synthesis are provided in the Experimental 

section.  

Representative SEM images and EDX mapping of Ba0.5Sr0.5Co0.75Fe0.25O3-δ are shown in 

Figure 1. The high resolution SEM image (Figure 1b) shows that the highly corrugated oxide 

structure is composed of particles in the range of 1 to 2 μm. The elemental mapping displayed in 

figures 1c-f demonstrates that the composition of the oxides is highly homogenous in the 

micrometer length scale. Table S1 (supporting information) summarizes the relative metal 

composition of the particles with respect to the average Ba content as extracted from the EDX 

analysis over a large ensemble of particles. The elemental ratio largely matches the composition 

at the precursor solution, confirming the high mixing and oxide conversion efficiency of this 

method.29 In the remaining of the discussion, we shall label the various oxides according to the 

composition estimated by EDX. SEM images in the supporting information (figure S1) shows a 

similar microstructure for the various oxides. Slightly larger grain sizes are seen in the case of 

Ba0.5Sr0.5CoO3-δ, however no systematic variations is observed with the oxide composition. 
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Figure 1. Representative SEM image (a) and high resolution SEM image (b) of 

Ba0.5Sr0.5Co0.7Fe0.3O3-δ together with Ba Lα1 (c), Sr Lα1 (d), Co Kα1 (e) and Fe Kα1 (f) elemental 

mapping shown as colour spots.  

 

X-ray diffraction patterns of the various Ba0.5Sr0.5CoxFe1-xO3-δ particles are displayed in 

Figure 2, which are consistent with a cubic structure (Pm-3m space group) for all compositions. 

The XRD patterns were quantitatively analyzed employing the Rietveld method, revealing a very 

high degree of phase purity. Details about the XRD analysis, including fitting functions, can be 

found on the Supporting Information. In agreement with observations by Jung et al.,14 high phase 

purity required a crystallization temperature of 950°C. It should be mentioned that hexagonal 
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phases of BSCF have been reported in the literature, however, the work by Kuklja et al has shown 

than oxygen vacancies tend to stabilize the cubic phase.36  

Table 1 contrasts the values of Co content (x) as obtained from EDX and the lattice 

parameter estimated by XRD refinement. The refined metal occupancies (Table S2) are largely 

consistent with values obtained from EDX data (Table S1), except for a slight discrepancy for x = 

0.70. The excellent quality of the refinement is demonstrated by the statistical correlation 

coefficients Rp and Rwp. The data in Table 1 show a systematic increase in the lattice constant with 

increasing Co content (x). This trend can be observed more clearly in Figure S2, showing 

diffractograms in narrow ranges centered at 32o and 67o diffraction angles. The peak positions 

shifts towards larger angles as the Fe content increases. It is also observed that the line width for 

mixed Co/Fe compositions is broader than the ones consisting only Co or Fe. The variation in line 

width is associated with slight changes in the mean crystallite sizes between 21 and 45 nm (see 

table S2). However, the variation in crystallite sizes does no show a correlation with the oxide 

composition. From these set of experiments, we can conclude that the key structural parameter that 

systematically changes with the B-site composition is the lattice constant. 
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Figure 2. Room temperature X-ray diffraction patterns for Ba0.5Sr0.5CoxFe1-xO3-δ calcined at 

950°C in air. Red dots correspond to the experimental values while the black thin line corresponds 

to the Rietveld refinement. The thin blue line shows the difference between experimental and 

refined patterns. The green bars correspond to the positions of the allowed Bragg reflections for 

the main phase. 

 

Table 1. Cobalt content as measure by EDX analysis and lattice constant deduced from Rietveld 

refinement of PXRD data. 

Sample Co content (x) Lattice Parameter 
Å 

Ba0.5Sr0.5CoO3-δ 1.08 ± 0.16 4.012(3) 

Ba0.5Sr0.5Co0.7Fe0.3O3-δ 0.67 ± 0.03 3.991(2) 

Ba0.5Sr0.5Co0.25Fe0.75O3-δ 0.20 ± 0.01 3.963(3) 

Ba0.5Sr0.5FeO3-δ - 3.938(5) 
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The responses obtained for the various oxides supported on a mesoporous carbon film at a 

rotating ring-disk electrode (RRDE) at 1600 rpm are exemplified in Figure 3. The electrolyte 

solution was saturated with high purity oxygen with 0.1 M KOH as supporting electrolyte (further 

details can be found in the experimental section). The responses obtained for the mesoporous 

carbon layer (Vulcan) are also shown for comparison. The data show that introduction of 

Ba0.5Sr0.5CoxFe1-xO3-δ have little effect on the ORR onset potential with respect to the Vulcan film. 

It should be mentioned that the onset potentials obtained are within the range of previous works in 

the literature using BSCF materials.9, 13, 14 A closer examination of the disk current (iD) reveals that 

addition of the oxide particles leads to an increase of the current at potentials above 0.6 V, 

particularly in the case of Ba0.5Sr0.5CoO3-δ. It can also be seen that the ring current (iR), which is 

proportional to the flux of HO2
− generated at the disk electrode, decreases with respect to the 

Vulcan electrode in the presence of Ba0.5Sr0.5CoO3-δ. The limiting current does not show a clear 

plateau at potentials below 0.5 V due to the strong contribution of the Vulcan support. 

Consequently, the ORR responses involve contributions from the 4-electron process, as well as 

the two-electron reaction (generating HO2
−) at the oxide and carbon support.  
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Figure 3. Current-potential curves of Vulcan supported Ba0.5Sr0.5CoxFe1-xO3-δ RRDE electrodes at 

1600 rpm in O2-saturated 0.1 M KOH and a scan rate of 10 mV s-1. Pt ring held at a potential of 

1.1 V (top panel). The catalyst loading in all samples is 250 µgOXIDE cm-2. Other experimental 

details can be found in the experimental section. 

 

Figure S2 compares the HO2
− yields (𝑋𝐻𝑂2−) and effective number of transferred electrons 

(ne-) at 1600 rpm as estimated from the ring and disk currents. The results clearly show that as the 

Fe content increases, the performance of the catalysts towards the four-electron process 

substantially decreases. It is also seen that the responses in the presence of Ba0.5Sr0.5FeO3-δ are 

very similar to those of the Vulcan support, strongly suggesting that this perovskite is poorly 

active.  

Figure 4a contrasts 𝑋𝐻𝑂2− and ne- as a function of the perovskite composition at 0.65 V, as 

extracted from Figure S3. These results, obtained from averaging the responses of at least three 
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different samples of each material, clearly show an improvement in activity (above that of Vulcan) 

for perovskites with high Co content. The kinetic limiting current (ik) at 0.65 V, as estimated from 

the dependence of the current on the rotation rate (Koutecky-Levich plots), is shown in figure 4b 

as a function of the Co content. Characteristic Koutecky-Levich plots for the various materials can 

be found in the supporting information (Figure S4). The value of ik (0.65 V) can be regarded as the 

overall activity of the materials towards the ORR reaction at this potential. We have also extracted 

the phenomenological electron transfer rate constant for the four electron-step (kdirect), based on 

the Damjanovic model.37-40 As described in our previous papers,19, 20 this parameter is dependent 

of a number of constant including particle size and catalysts loading. Although there is a relatively 

broad particle size dispersion, this parameter is similar for all of the oxides which is mainly 

determined by the calcination temperature.  

The trends shown in figure 4 consistently show an increase in the activity of the oxide for 

the overall ORR as well as the direct 4-electron process with increasing content of Co in the B-

site, which is more notorious for the high Co content samples. The dotted lines in figure 4b 

correspond to the values of ik and kdirect measured for the Vulcan support. These data confirm that 

the electrochemical performance of materials with high Fe content is mainly determined by the 

carbon support.  Previous studies on Sr2MMoO6 (M = Fe and Co) have shown that Sr2CoMoO6 is 

more active than Sr2FeMoO6, favoring the direct 4-electron pathway.41 In a previous work, we 

have also observed that LaCoO3 exhibits slightly higher activity than LaFeO3, although both 

materials exhibits rate constants orders of magnitude lower than LaMnO3.19 Indeed, kinetically 

limited currents for LaMnO3 are in the rage of 1-10 A g-1,21 while the pure Co catalyst is close to 

0.1 A g-1 at 0.65 V. It should be mentioned that the mean particle size of the Ba0.5Sr0.5CoxFe1-xO3-

δ is more than one order of magnitude higher than those reported for the more active LaMnO3. 



 14 

Another reason for the higher activity of the Mn based perovskite is the change in redox state of 

the Mn site at potentials close to the formal ORR potential.19, 22 Figure S5 contrasts the current-

potential characteristics of the various Ba0.5Sr0.5CoxFe1-xO3-δ catalysts confirming that no changes 

in the redox state of Co or Fe sites take place in the relevant potential range. 

 

Figure 4. (a) Effective number of transferred electrons (𝑛𝑒−) reaction and yield of HO2
− formation 

during ORR (𝑋𝐻𝑂2−) at 0.65 V as a function of the Co content as estimated from EDX. (b) 

Compositional dependence of the kinetic limiting current (ik) and phenomenological electron 

transfer rate constant for the 4-electron step (kdirect) at 0.65 V vs RHE. The dotted lines correspond 

to the values of ik (black) and kdirect (blue) measured for the carbon support, i.e. in the absence of 

oxide particles. 
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In order to further rationalize the composition dependent activity of the perovskites, oxygen 

vacancy formation energies (EVo) were calculated by ab-initio DFT on a 40 atoms supercell 

schematically shown in figure 5a. The supercells were constructed based on the lattice parameters 

and atomic positions extracted from the XRD refinement. Functional, pseudopotential and other 

key information of the calculations are included in the Experimental section. Figure 5b shows the 

calculated EVo as a function of the Co content (x). It is observed that EVo increases with decreasing 

cobalt content from ~1.2 eV up to 2.3 eV, in agreement with previous theoretical studies of Ba1-

xSrxCo1-yFeyO3-δ.
26, 28  It is interesting to notice that the trend of EVo correlates with the oxygen 

occupancy obtained from the XRD refinement (Table S2). EVo is also calculated in different 

configurations: when oxygen is removed from in between (i) identical (i.e. FeVoFe and CoVoCo) 

or (ii) different metal atoms (i.e. FeVoCo). Figure 5b shows that the values of EVo for different 

configurations, but the same supercell composition, are very similar, indicating that the electron 

density is being delocalized over the entire supercell.  
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Figure 5. (a) Ba0.5Sr0.5CoxFe1-xO3-δ supercell used for calculations. (b) Oxygen vacancy formation 

energy EVo as a function of cobalt content (x) in Ba0.5Sr0.5CoxFe1-xO3-δ. 

 

The effective changes in charge density at a metal site, q, as a result of the formation of 

oxygen vacancies are shown in Table 2. Oxygen vacancy leads to a distribution of the 

corresponding negative charges onto the nearest transition metal ions (Fe or Co), depending on the 

configuration. The analysis shows that whenever oxygen is being taken out from a mixed 

configuration (e.g. FeVoCo), cobalt acquires a higher share of the charge. It is also observed that 

the charge on the Co ion decreases as the Co content increases, i.e. a transition from Co3+ to Co2+. 
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Indeed, the work by Merkle et al. has shown that Co exhibits a high density of states near the Fermi 

level, enabling to adopt lower oxidation states, while Fe orbitals are located above 1 eV higher.26 

XANES studies of Ba0.5Sr0.5Co0.8Fe0.2O3-δ have shown that the Co oxidation state is between 2+ 

and 3+.10 As Co2+ has a larger ionic radius than Co3+ in a six-fold symmetry, the partial reduction 

of Co3+ leads to the expansion of unit cell as observed in the XRD analysis. Furthermore, the strain 

introduced by the large Ba cation forces the Co ions to adopt a lower oxidation state, and the 

formation of oxygen vacancies while shifting the Fermi level.26, 28, 42-44 

Table 2. Oxygen vacancy formation energies (EVo) and change in charge per atom (q) at the 

neighboring Co or Fe site 

X Configuration EVo / eV ΔqCo ΔqFe 

1.00 CoVoCo 1.18 -0.23 
 

 

0.75 
FeVoCo 

CoVoCo 

1.43 

1.36 

-0.25 

-0.21 

-0.12 

0.25 
FeVoFe 

FeVoCo 

1.83 

1.75 

 

-0.17 

-0.15 

-0.14 

0.00 FeVoFe 2.31 
 

 
-0.17 

 

The analysis of EVo provides various angles for rationalizing the increase of the perovskite 

ORR activity with Co content. However, we believe that the fundamental link relates to the 

increase in the electron density at the Co sites as result of oxygen vacancy formation, i.e. the larger 

the electron density at the Co-sites, the higher is the activity towards ORR. This trend could be 
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compared to the conclusion reached by Fabbri et al.10 in which the activity of 

Ba0.5Sr0.5Co0.8Fe0.2O3-δ/carbon composites is improved due to an increase in the electron density 

at the Co sites promoted by the carbon support. This view appears also consistent with the high 

activity of Mn based oxides in which the electron density at the catalytic site is directly determined 

by the electrode potential.19, 21, 22  

4. CONCLUSIONS 

The activity of Ba0.5Sr0.5CoxFe1-xO3-δ particles supported at mesoporous carbon electrodes 

towards the oxygen reduction reaction has been systematically investigated as a function of the B-

site composition. Highly phase pure oxide particles with x values between 0 and 1 were synthesized 

with a highly versatile ionic liquid method. Results obtained employing rotating ring-disk 

electrodes clearly show an increase in the overall ORR kinetics, as well as the direct 4-electron 

step, as the Co content increases. High Fe-content oxides resulted in activities similar to that of the 

carbon support.  

DFT supported by structural parameters estimated from experimental XRD data, was used to 

calculate oxygen vacancy formation energies and the associated partial reduction of metal sites. 

Our results show that the materials with a higher Co content exhibit lower oxygen vacancy 

formation energy, leading to higher electron density at the Co-site. Towards further improving 

electrocatalytic performance, the structure of the Ba0.5Sr0.5CoO3-δ/carbon composites requires 

further optimization, in particular the effective surface area of the oxide phase. As discussed above, 

the introduction of Ba generates a strain in the lattice which promotes lower oxidation state of Co 

sites. Systematic studies of the Ba content will also be an interesting strategy to follow, considering 

the stability arguments discussed in the literature.36 The picture emerging from this work, as well 

as our previous studies on Mn containing perovskites,19, 20 reveals that the ORR activity at these 
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complex materials appear to improve with increasing electron density at the B-site under 

operational conditions.  
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