21 research outputs found

    Oxytocin, Cortisol, and Cognitive Control During Acute and Naturalistic Stress

    Get PDF
    Although stress is a strong risk factor for poor health, especially for women, it remains unclear how stress affects the key neurohormones cortisol and oxytocin, which influence stress-related risk and resilience. Whereas cortisol mediates energy mobilization during stress, oxytocin has anti-inflammatory, anxiolytic, and analgesic effects that support social connection and survival across the lifespan. However, how these neurohormones interrelate and are associated with cognitive control of emotional information during stress remains unclear. To address these issues, we recruited 37 college-aged women (Mage = 19.19, SD = 1.58) and randomly assigned each to a one-hour experimental session consisting of either an acute stress (emotionally stressful video) or control (non-stressful video) condition in a cross-sectional manner across the semester. Salivary cortisol and oxytocin samples were collected at baseline and after the video, at which point participants also completed measures assessing affect and an emotional Stroop task. As hypothesized, the emotional stressor induced negative emotions that were associated with significant elevations in cortisol and faster Stroop reaction times. Moreover, higher baseline oxytocin predicted greater positive affect after the stressor and also better cognitive accuracy on the Stroop. Analyses examining the naturalistic stress effects revealed that basal oxytocin levels rose steeply three weeks before the semester’s end, followed by rising cortisol levels one week later, with both neurohormones remaining elevated through the very stressful final exam period. Considered together, these data suggest that women’s collective experiences of stress may be potentially buffered by a synchronous oxytocin surge that enhances cognitive accuracy and reduces stress “when the going gets tough”

    Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Get PDF
    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation

    DittoSupplemental_figure_1_copy – Supplemental material for At Least Bias Is Bipartisan: A Meta-Analytic Comparison of Partisan Bias in Liberals and Conservatives

    No full text
    <p>Supplemental material, DittoSupplemental_figure_1_copy for At Least Bias Is Bipartisan: A Meta-Analytic Comparison of Partisan Bias in Liberals and Conservatives by Peter H. Ditto, Brittany S. Liu, Cory J. Clark, Sean P. Wojcik, Eric E. Chen, Rebecca H. Grady, Jared B. Celniker, and Joanne F. Zinger in Perspectives on Psychological Science</p

    At Least Bias Is Bipartisan: A Meta-Analytic Comparison of Partisan Bias in Liberals and Conservatives

    No full text
    Both liberals and conservatives accuse their political opponents of partisan bias, but is there empirical evidence that one side of the political aisle is indeed more biased than the other? To address this question, we meta-analyzed the results of 51 experimental studies, involving over 18,000 participants, that examined one form of partisan bias—the tendency to evaluate otherwise identical information more favorably when it supports one’s political beliefs or allegiances than when it challenges those beliefs or allegiances. Two hypotheses based on previous literature were tested: an asymmetry hypothesis (predicting greater partisan bias in conservatives than in liberals) and a symmetry hypothesis (predicting equal levels of partisan bias in liberals and conservatives). Mean overall partisan bias was robust (r = .245), and there was strong support for the symmetry hypothesis: Liberals (r = .235) and conservatives (r = .255) showed no difference in mean levels of bias across studies. Moderator analyses reveal this pattern to be consistent across a number of different methodological variations and political topics. Implications of the current findings for the ongoing ideological symmetry debate and the role of partisan bias in scientific discourse and political conflict are discussed
    corecore