10 research outputs found

    Ambient DESI and LESA-MS analysis of proteins adsorbed to a biomaterial surface using in-situ surface tryptic digestion

    Get PDF
    The detection and identification of proteins adsorbed onto biomaterial surfaces under ambient conditions has significant experimental advantages but has proven to be difficult to achieve with conventional measuring technologies. In this study, we present an adaptation of desorption electrospray ionization (DESI) and liquid extraction surface analysis (LESA) mass spectrometry (MS) coupled with in-situ surface tryptic digestion to identify protein species from a biomaterial surface. Cytochrome c, myoglobin, and BSA in a combination of single and mixture spots were printed in an array format onto Permanox slides, followed by in-situ surface digestion and detection via MS. Automated tandem MS performed on surface peptides was able to identify the proteins via MASCOT. Limits of detection were determined for DESI-MS and a comparison of DESI and LESA-MS peptide spectra characteristics and sensitivity was made. DESI-MS images of the arrays were produced and analyzed with imaging multivariate analysis to automatically separate peptide peaks for each of the proteins within a mixture into distinct components. This is the first time that DESI and LESA-MS have been used for the in-situ detection of surface digested proteins on biomaterial surfaces and presents a promising proof of concept for the use of ambient MS in the rapid and automated analysis of surface proteins

    Ambient DESI- and LESA-MS analysis of proteins adsorbed to a biomaterial surface using in-situ surface tryptic digestion

    Get PDF
    Abstract. The detection and identification of proteins adsorbed onto biomaterial surfaces under ambient conditions has significant experimental advantages but has proven to be difficult to achieve with conventional measuring technologies. In this study, we present an adaptation of desorption electrospray ionization (DESI) and liquid extraction surface analysis (LESA) mass spectrometry (MS) coupled with in-situ surface tryptic digestion to identify protein species from a biomaterial surface. Cytochrome c, myoglobin, and BSA in a combination of single and mixture spots were printed in an array format onto Permanox slides, followed by in-situ surface digestion and detection via MS. Automated tandem MS performed on surface peptides was able to identify the proteins via MASCOT. Limits of detection were determined for DESI-MS and a comparison of DESI and LESA-MS peptide spectra characteristics and sensitivity was made. DESI-MS images of the arrays were produced and analyzed with imaging multivariate analysis to automatically separate peptide peaks for each of the proteins within a mixture into distinct components. This is the first time that DESI and LESA-MS have been used for the in-situ detection of surface digested proteins on biomaterial surfaces and presents a promising proof of concept for the use of ambient MS in the rapid and automated analysis of surface proteins

    Synthetic light-curable polymeric materials provide a supportive niche for dental pulp stem cells

    Get PDF
    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs

    Materials for stem cell factories of the future

    Get PDF
    The materials community is now identifying polymeric substrates that could permit translation of human pluripotent stem cells (hPSCs) from lab-based research to industrial scale biomedicine. Well defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large scale drug screening programs and clinical use, wherein >1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells for one patient is challenging and a rethink is needed to scalable technology with the potential to meet the needs of millions of patients a year. Here we consider the role of materials discovery, an emerging area of materials chemistry that is in a large part driven by the challenges posed by biologists to materials scientists1-4

    A defined synthetic substrate for serum-free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays

    Get PDF
    Cardiomyocytes from human stem cells have applications in regenerative medicine and can provide models for heart disease and toxicity screening. Soluble components of the culture system such as growth factors within serum and insoluble components such as the substrate on which cells adhere to are important variables controlling the biological activity of cells. Using a combinatorial materials approach we develop a synthetic, chemically defined cellular niche for the support of functional cardiomyocytes derived from human embryonic stem cells (hESC-CMs) in a serum-free fully defined culture system. Almost 700 polymers were synthesized and evaluated for their utility as growth substrates. From this group, 20 polymers were identified that supported cardiomyocyte adhesion and spreading. The most promising 3 polymers were scaled up for extended culture of hESC-CMs for 15 days and were characterized using patch clamp electrophysiology and myofibril analysis to find that functional and structural phenotype was maintained on these synthetic substrates without the need for coating with extracellular matrix protein. In addition, we found that hESC-CMs cultured on a co-polymer of isobornyl methacrylate and tert-butylamino-ethyl methacrylate exhibited significantly longer sarcomeres relative to gelatin control. The potential utility of increased structural integrity was demonstrated in an in vitro toxicity assay that found an increase in detection sensitivity of myofibril disruption by the anti-cancer drug doxorubicin at a concentration of 0.05 ?M in cardiomyocytes cultured on the co-polymer compared to 0.5 ?M on gelatin. The chemical moieties identified in this large-scale screen provide chemically defined conditions for the culture and manipulation of hESC-CMs, as well as a framework for the rational design of superior biomaterials

    High throughput screening for discovery of materials that control stem cell fate

    Get PDF
    Insights into the complex stem cell niche have identified the cell–material interface to be a potent regulator of stem cell fate via material properties such as chemistry, topography and stiffness. In light of this, materials scientists have the opportunity to develop bioactive materials for stem cell culture that elicit specific cellular responses. To accelerate materials discovery, high throughput screening platforms have been designed which can rapidly evaluate combinatorial material libraries in two and three-dimensional environments. In this review, we present screening platforms for the discovery of material properties that influence stem cell behavior

    The impact of detergents on the tissue decellularization process: a ToF-SIMS study

    Get PDF
    Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy

    Receptor control in mesenchymal stem cell engineering

    No full text
    corecore