1,409 research outputs found

    Cosmological Evolution of the Universe Neutral Gas Mass Measured by Quasar Absorption Systems

    Full text link
    The cosmological evolution of neutral hydrogen is an efficient way of tracing structure formation with redshift. It indicates the rate of evolution of gas into stars and hence the gas consumption and rate star formation history of the Universe. In measuring HI, quasar absorbers have proven to be an ideal tool and we use observations from a recent survey for high-redshift quasar absorption systems together with data gathered from the literature to measure the cosmological comoving mass density of neutral gas. This paper assumes Omega_M=0.3, Omega_lambda=0.7 and h=0.65.Comment: 3 pages, 2 figures. To appear in the proceedings of the "Cosmic Evolution" conference, held at l'Institut d'Astrophysique de Paris, November 13-17, 200

    A Homogeneous Sample of Sub-DLAs IV: Global Metallicity Evolution

    Full text link
    An accurate method to measure the abundance of high-redshift galaxies consists in the observation of absorbers along the line of sight toward a background quasar. Here, we present abundance measurements of 13 z>3 sub-Damped Lyman-alpha Systems (quasar absorbers with HI column density 19 < log N(HI) < 20.3 cm^-2) based on the high resolution observations with VLT UVES spectrograph. These observations more than double the metallicity information for sub-DLAs previously available at z>3. This new data, combined with other sub-DLA measurements from the literature, confirm the stronger metallicity redshift evolution than for the classical Damped Lyman-alpha absorbers. Besides, these observations are used to compute for the first time the fraction of gas ionised from photo-ionisation modelling in a sample of sub-DLAs. Based on these results, we calculate that sub-DLAs contribute no more than 6% of the expected amount of metals at z~2.5. We therefore conclude that even if sub-DLAs are found to be more metal-rich than classical DLAs, they are insufficient to close the so-called ``missing metals problem''.Comment: 30 figures, 24 tables. Accepted for publication in MNRA

    Keck and VLT Observations of Super-damped Lyman-alpha Absorbers at z=2=2.5: Constraints on Chemical Compositions and Physical Conditions

    Full text link
    We report Keck/ESI and VLT/UVES observations of three super-damped Lyman-alpha quasar absorbers with H I column densities log N(HI) >= 21.7 at redshifts z=2-2.5. All three absorbers show similar metallicities (-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other DLAs to examine trends between N(HI), metallicity, dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H]=20.59-log N(HI) in the metallicity vs. N(HI) plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log N(HI) < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Ly-alpha emission, implying star formation rates of about 1.6 and 0.7 solar masses per year, respectively (ignoring dust extinction). Upper limits on the electron densities from C II*/C II or Si II*/Si II are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log N(HI) > 21.7 may have somewhat narrower velocity dispersions delta v_90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas.Comment: 57 pages, 15 figures. Accepted for publication in Ap

    Element Abundances at High-redshift: Magellan MIKE Observations of sub-Damped Lyman-alpha Absorbers at 1.7 < z <2.4

    Full text link
    We present chemical abundance measurements from high-resolution observations of 5 sub-damped Lyman-alpha absorbers at 1.7 < z < 2.4 observed with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the 6.5-m Magellan II Clay telescope. Lines of Zn II, Mg I, Mg II, Al II, Al III, S II, Si II, Si IV, C II, C II*, C IV, Ni II, Mn II and Fe II were detected and column densities were determined. The metallicity of the absorbing gas, inferred from the nearly undepleted element Zn, is in the range of < -0.95 to +0.25 dex for the five absorbers in our sample, with three of the systems being near-solar or super-solar. We also investigate the effect of ionisation on the observed abundances using photoionisation modelling. Combining our data with other sub-DLA and DLA data from the literature, we report the most complete existing determination of the metallicity vs. redshift relation for sub-DLAs and DLAs. We confirm the suggestion from previous investigations that sub-DLAs are, on average, more metal-rich than DLAs and evolve faster. We also discuss relative abundances and abundance ratios in these absorbers. The more metal-rich systems show significant dust depletion levels, as suggested by the ratios [Zn/Cr] and [Zn/Fe]. For the majority of the systems in our sample, the [Mn/Fe] vs. [Zn/H] trend is consistent with that seen previously for lower-redshift sub-DLAs. We also measure the velocity width values for the sub-DLAs in our sample from unsaturated absorption lines of Fe II 2344, 2374, 2600 A, and examine where these systems lie in a plot of metallicity vs. velocity dispersion. Finally, we examine cooling rate vs. H I column density in these sub-DLAs, and compare this with the data from DLAs and the Milky Way ISM. We find that most of the systems in our sample show higher cooling rate values compared to those seen in the DLAs.Comment: Accepted for publication in the Monthly Notices of The Royal Astronomical Societ

    Low sensitivity to optical feedback and optical injection of discrete mode lasers

    Get PDF
    In this paper, we demonstrate the low sensitivity to both external optical feedback and external optical injection of a new type of extremely low cost single-mode lasers, called "discrete mode" (DM) lasers. The DM lasers are obtained from ridge waveguide Fabry Perot (FP) lasers, in which the effective refractive index of the lasing mode has been perturbed. These lasers exhibit a low sensitivity to external optical feedback since the coherence collapse threshold is around 5 dB higher in comparison to a commercial DFB laser

    Critical Behaviour of the Number of Minima of a Random Landscape at the Glass Transition Point and the Tracy-Widom distribution

    Full text link
    We exploit a relation between the mean number NmN_{m} of minima of random Gaussian surfaces and extreme eigenvalues of random matrices to understand the critical behaviour of NmN_{m} in the simplest glass-like transition occuring in a toy model of a single particle in NN-dimensional random environment, with N1N\gg 1. Varying the control parameter μ\mu through the critical value μc\mu_c we analyse in detail how Nm(μ)N_{m}(\mu) drops from being exponentially large in the glassy phase to Nm(μ)1N_{m}(\mu)\sim 1 on the other side of the transition. We also extract a subleading behaviour of Nm(μ)N_{m}(\mu) in both glassy and simple phases. The width δμ/μc\delta{\mu}/\mu_c of the critical region is found to scale as N1/3N^{-1/3} and inside that region Nm(μ)N_{m}(\mu) converges to a limiting shape expressed in terms of the Tracy-Widom distribution
    corecore