39 research outputs found

    Severe Respiratory Disease Concurrent with the Circulation of H1N1 Influenza

    Get PDF
    Background In the spring of 2009, an outbreak of severe pneumonia was reported in conjunction with the concurrent isolation of a novel swine-origin influenza A (H1N1) virus (S-OIV), widely known as swine flu, in Mexico. Influenza A (H1N1) subtype viruses have rarely predominated since the 1957 pandemic. The analysis of epidemic pneumonia in the absence of routine diagnostic tests can provide information about risk factors for severe disease from this virus and prospects for its control. Methods From March 24 to April 29, 2009, a total of 2155 cases of severe pneumonia, involving 821 hospitalizations and 100 deaths, were reported to the Mexican Ministry of Health. During this period, of the 8817 nasopharyngeal specimens that were submitted to the National Epidemiological Reference Laboratory, 2582 were positive for S-OIV. We compared the age distribution of patients who were reported to have severe pneumonia with that during recent influenza epidemics to document an age shift in rates of death and illness. Results During the study period, 87% of deaths and 71% of cases of severe pneumonia involved patients between the ages of 5 and 59 years, as compared with average rates of 17% and 32%, respectively, in that age group during the referent periods. Features of this epidemic were similar to those of past influenza pandemics in that circulation of the new influenza virus was associated with an off-season wave of disease affecting a younger population. Conclusions During the early phase of this influenza pandemic, there was a sudden increase in the rate of severe pneumonia and a shift in the age distribution of patients with such illness, which was reminiscent of past pandemics and suggested relative protection for persons who were exposed to H1N1 strains during childhood before the 1957 pandemic. If resources or vaccine supplies are limited, these findings suggest a rationale for focusing prevention efforts on younger populations

    Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf

    Get PDF
    Macrophages respond to Salmonella typhimurium infection via Ipaf, a NACHT–leucine-rich repeat family member that activates caspase-1 and secretion of interleukin 1β. However, the specific microbial salmonella-derived agonist responsible for activating Ipaf is unknown. We show here that cytosolic bacterial flagellin activated caspase-1 through Ipaf but was independent of Toll-like receptor 5, a known flagellin sensor. Stimulation of the Ipaf pathway in macrophages after infection required a functional salmonella pathogenicity island 1 type III secretion system but not the flagellar type III secretion system; furthermore, Ipaf activation could be recapitulated by the introduction of purified flagellin directly into the cytoplasm. These observations raise the possibility that the salmonella pathogenicity island 1 type III secretion system cannot completely exclude 'promiscuous' secretion of flagellin and that the host capitalizes on this 'error' by activating a potent host-defense pathway

    Chikungunya Virus as Cause of Febrile Illness Outbreak, Chiapas, Mexico, 2014

    Get PDF
    Since chikungunya virus (CHIKV) was introduced into the Americas in 2013, its geographic distribution has rapidly expanded. Of 119 serum samples collected in 2014 from febrile patients in southern Mexico, 79% were positive for CHIKV or IgM against CHIKV. Sequencing results confirmed CHIKV strains closely related to Caribbean isolates

    Respiratory viruses detected in Mexican children younger than 5 years old with community-acquired pneumonia: a national multicenter study

    Get PDF
    Background: Acute respiratory infections are the leading cause of mortality in children worldwide, especially in developing countries. Pneumonia accounts for 16% of all deaths of children under 5 years of age and was the cause of death of 935 000 children in 2015. Despite its frequency and severity, information regarding its etiology is limited. The aim of this study was to identify respiratory viruses associated with community-acquired pneumonia (CAP) in children younger than 5 years old. Methods: One thousand four hundred and four children younger than 5 years of age with a clinical and/or radiological diagnosis of CAP in 11 hospitals in Mexico were included. Nasal washes were collected, placed in viral medium, and frozen at �70 C until processing. The first 832 samples were processed using the multiplex Bio-Plex/Luminex system and the remaining 572 samples using the Anyplex multiplex RT-PCR. Clinical data regarding diagnosis, clinical signs and symptoms, radiographic pattern, and risk factors were obtained and recorded. Results: Of the samples tested, 81.6% were positive for viruses. Respiratory syncytial virus (types A and B) was found in 23.7%, human enterovirus/rhinovirus in 16.6%, metapneumovirus in 5.7%, parainfluenza virus (types 1–4) in 5.5%, influenza virus (types A and B) in 3.6%, adenovirus in 2.2%, coronavirus (NL63, OC43, 229E, and HKU1) in 2.2%, and bocavirus in 0.4%. Co-infection with two or more viruses was present in 22.1%; 18.4% of the samples were negative. Using biomass for cooking, daycare attendance, absence of breastfeeding, and co-infections were found to be statistically significant risk factors for the presence of severe pneumonia. Conclusions: Respiratory syncytial virus (types A and B), human enterovirus/rhinovirus, and metapneumovirus were the respiratory viruses identified most frequently in children younger than 5 years old with CAP. Co-infection was present in an important proportion of the children

    The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report

    Get PDF
    The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium is a novel, interdisciplinary initiative comprised of experts across many fields, including genomics, data analysis, engineering, public health, and architecture. The ultimate goal of the MetaSUB Consortium is to improve city utilization and planning through the detection, measurement, and design of metagenomics within urban environments. Although continual measures occur for temperature, air pressure, weather, and human activity, including longitudinal, cross-kingdom ecosystem dynamics can alter and improve the design of cities. The MetaSUB Consortium is aiding these efforts by developing and testing metagenomic methods and standards, including optimized methods for sample collection, DNA/RNA isolation, taxa characterization, and data visualization. The data produced by the consortium can aid city planners, public health officials, and architectural designers. In addition, the study will continue to lead to the discovery of new species, global maps of antimicrobial resistance (AMR) markers, and novel biosynthetic gene clusters (BGCs). Finally, we note that engineered metagenomic ecosystems can help enable more responsive, safer, and quantified cities

    Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: The ZIKAlliance consortium

    Get PDF
    Background: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. Methods: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmissio

    Center of Infectious Diseases Research: 33 years of training human resources and producin scientific knowledge

    No full text
    El Centro de Investigación sobre Enfermedades Infecciosas (CISEI) tiene sus orígenes en el Centro Nacional de Enfermedades Infecciosas (CNEI), creado el 29 de junio de 1984, con el apoyo de los Drs. Guillermo Soberón Acevedo y Jesús Kumate Rodríguez, en aquel entonces secretario de salud y coordinador general de los Institutos Nacionales de Salud, respectivamente. La creación de un centro dedicado a la investigación sobre enfermedades infecciosas había sido un proyecto del Dr. Jesús Kumate Rodríguez desde hacía mucho tiempo. Nace entonces con la misión de practicar estudios integrales de los padecimientos infecto-contagiosos identificados como uno de los principales problemas de salud del país. Este enfoque integral comenzaba en la investigación biomédica básica, para pasar a los estudios clínicos y a los ensayos de campo..

    The WHO methodology for point prevalence surveys on antibiotics use in hospitals should be improved: Lessons from pilot studies in four Mexican hospitals

    No full text
    Point prevalence surveys (PPSs) are a useful option for collecting antimicrobial prescription data in hospitals where regular monitoring is not feasible. The methodology recommended by the World Health Organization (WHO) for conducting PPSs (WPPS), which targets low- and middle-income countries (LMICs), attempts to respond to the lag in these regions to generate estimates for antimicrobial use. However, based on our experience in four third-level public hospitals in Mexico, we identified substantial gaps in the WPPS guide with regards to addressing common challenges for the implementation of PPSs. While the oversimplified narrative of WPPS could facilitate the adoption of this methodology and extend its use, it underestimates the efforts and potential pitfalls for survey preparation, coordination, and reliable implementation. Conducting rigorous pilot studies could reduce the WPPS deficiencies and strengthen the reliability and comparability of the estimates for antimicrobial use
    corecore