1,201 research outputs found

    Strong reduction of field-dependent microwave surface resistance in YBa2_{2}Cu3_{3}O7−δ_{7-\delta} with sub-micrometric BaZrO3_3 inclusions

    Full text link
    We observe a strong reduction of the field induced thin film surface resistance measured at high microwave frequency (ν=\nu=47.7 GHz) in YBa2_{2}Cu3_{3}O7−δ_{7-\delta} thin films grown on SrTiO3_3 substrates, as a consequence of the introduction of sub-micrometric BaZrO3_3 particles. The field increase of the surface resistance is smaller by a factor of ∼\sim3 in the film with BaZrO3_3 inclusions, while the zero-field properties are not much affected. Combining surface resistance and surface reactance data we conclude (a) that BaZrO3_3 inclusions determine very deep and steep pinning wells and (b) that the pinning changes nature with respect to the pure film.Comment: RevTeX; 4 pages, 3 figures; submitted to Applied Physics Letter

    Reduction of the field-dependent microwave surface resistance in YBa_2Cu_3O_7 with sub-micrometric BaZrO_3 inclusions as a function of BaZrO_3 concentration

    Full text link
    In order to study the vortex pinning determined by artificially introduced pinning centers in the small-vortex displacement regime, we measured the microwave surface impedance at 47.7 GHz in the mixed state of YBa2_{2}Cu3_{3}O7−δ_{7-\delta} thin films, where sub-micrometric BaZrO3_3 particles have been incorporated. As a function of the BaZrO3_3 content, we observe that the absolute losses slightly decrease up to a BaZrO3_3 content of 5%, and then increase. We found that the magnetic-field-induced losses behave differently, in that they are not monotonic with increasing BaZrO3_3 concentration: at small concentration (2.5%) the field-induced losses increase, but large reduction of the losses themselves, by factors up to 3, is observed upon further increasing the BaZrO3_3 concentration in the target up to 7%. Using measurements of both surface resistance and surface reactance we estimate vortex pinning-related parameters. We find that BaZrO3_3 inclusions introduce deep and steep pinning wells. In particular, the minimum height of the energy barrier for single vortices is raised. At larger BaZrO3_3 content (5% and 7%) the phenomenon is at its maximum, but it is unclear whether it shows a saturation or not, thus leaving room for further improvements.Comment: 7 pages, 7 figure

    Anisotropy and directional pinning in YBaCuO with BaZrO3 nanorods

    Full text link
    Measurements of anisotropic transport properties (dc and high-frequency regime) of driven vortex matter in YBa2_2Cu3_3O7−x_{7-x} with elongated strong-pinning sites (c-axis aligned, self-assembled BaZrO3_3 nanorods) are used to demonstrate that the effective-mass angular scaling takes place only in intrinsic physical quantities (flux-flow resistivity), and not in pinning-related Labusch parameter and critical currents. Comparison of the dynamics at different time scales shows evidence for a transition of the vortex matter toward a Mott phase, driven by the presence of nanorods. The strong pinning in dc arises partially from a dynamic effect.Comment: 4 pages, 4 figures. Accepted for publication on Applied Physics Letters. With respect to v1: changed title, slightly shortene

    Hybrid Superconducting Neutron Detectors

    Full text link
    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n →\rightarrow α\alpha+ 7Li , with α\alpha and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the future perspectives leading to neutron detectors with unprecedented spatial resolutions and efficiency are highlighted.Comment: 8 pages 6 figure

    A Zero-Transient Dual-Frequency Control for Class-E Resonant DC-DC Converters

    Get PDF
    In this paper, a dual-frequency control method for regulating the output power in class-E resonant DC-DC converters has been introduced. As in the standard ON-OFF control or other recently proposed dual-frequency controls, the approach is based on the ability of the converter to alternately operate in a high- and a low-power state. The proposed solution has a twofold advantage: on the one hand, soft-switching capabilities (i.e., Zero-Voltage and Zero-Voltage-Derivative switching) are preserved in both operating states; on the other hand, it is possible to reduce to zero the transient time required to switch from one state to the other one. The most straightforward consequence is the possibility to increase to very large values the frequency at which the two operating states are switched, up to the same order of magnitude as the main switching frequency of the converter. In this way, the additional ripple introduced by the proposed dual-frequency control can be decreased to a negligible value. The approach has been validated by measurements on a prototype operating between 4 MHz and 8 MHz and in which it has been possible to increase the control frequency up to 500 kHz

    Photoluminescence properties of C60 films deposited on silicon substrate

    Get PDF
    Photoluminescence (PL) spectra of C-60 films deposited on Si substrates have been measured from 10 to 300 K and as a function of laser excitation intensity. Recombination of self-trapped excitons and their phonon replicas, as well as X-trap-related emissions, are the main features of the PL spectra. The influence of the deposition parameters, namely deposition rate and substrate temperature, on the luminescence efficiency of the C-60 films have been investigated. Low substrate temperature produces a lowering of the PL efficiency, whereas an increase of the deposition rate causes an increase of the X-trap emission

    Effect of nanosize BaZrO3 inclusions on vortex parameters in YBaCuO

    Full text link
    We report on the field dependence of the microwave complex resistivity data in YBa2_2Cu3_3O7−x_{7-x}/BaZrO3_3 films grown by PLD at various BaZrO3_3 content. The data, analyzed within a recently developed general framework for the mixed-state microwave response of superconductors, yield the field dependence of the fluxon parameters such as the vortex viscosity and the pinning constant. We find that pinning undergoes a change of regime when the BaZrO3_3 content in the target increases from 2.5 mol.% to 5 mol.%. Simultaneously, the vortex viscosity becomes an increasing function of the applied magnetic field. We propose a scenario in which flux lines are pinned as bundles, and a crossover from dilute point pins to dense c-axis correlated defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data are inconsistent with vortices occupying mainly the BaZrO3_3 sites at low fields, and suggest instead that vortices occupy both BaZrO3_3 sites and interstitials in the YBa2_2Cu3_3O7−x_{7-x} matrix, even at low fields.Comment: Presented at EUCAS 2009, to be published in J. Phys.:Conf. Serie

    A Wireless Power Transfer System for Biomedical Implants based on an isolated Class-E DC-DC Converter with Power Regulation Capability

    Get PDF
    In this paper, the design of a wireless power transfer system (WPT) targeting biomedical implants is considered. The novelty of the approach is to propose a co-design of the transmitter and receiver side based on the design of class-E isolated DC-DC converters. The solution, along with the simple introduction of a shunt regulator at the receiver, allows us to solve the problem of ensuring optimal efficiency in the WPT link. In conventional solutions, in order to cope with coupling factor and load variations, information from the receiver is needed, which is usually relayed back onto the transmitter by means of telemetry. With the proposed approach, a very simple minimum power point tracking (mPPT) algorithm can be used to maximize the WPT efficiency based on the information already available at the transmitter side. This reduces the complexity of the circuitry of the implant and thereby its power overhead and possibly its size, both being crucial constraints of a biomedical implant
    • …
    corecore