12 research outputs found

    The effect of seasoning with herbs on the nutritional, safety and sensory properties of reduced-sodium fermented Cobrançosa cv. table olives

    Get PDF
    This study aimed at evaluating the effectiveness of seasoning Cobrancosa table olives in a brine with aromatic ingredients, in order to mask the bitter taste given by KCl when added to reduced-sodium fermentation brines. Olives were fermented in two different salt combinations: Brine A, containing 8% NaCl and, Brine B, a reduced-sodium brine, containing 4% NaCl + 4% KCl. After the fermentation the olives were immersed in seasoning brines with NaCl (2%) and the aromatic herbs (thyme, oregano and calamintha), garlic and lemon. At the end of the fermentation and two weeks after seasoning, the physicochemical, nutritional, organoleptic, and microbiological parameters, were determined. The olives fermented in the reduced-sodium brines had half the sodium concentration, higher potassium and calcium content, a lower caloric level, but were considered, by a sensorial panel, more bitter than olives fermented in NaCl brine. Seasoned table olives, previously fermented in Brine A and Brine B, had no significant differences in the amounts of protein (1.23% or 1.11%), carbohydrates (1.0% or 0.66%), fat (20.0% or 20.5%) and dietary fiber (3.4% or 3.6%). Regarding mineral contents, the sodium-reduced fermented olives, presented one third of sodium, seven times more potassium and three times more calcium than the traditional olives fermented in 8% NaCl. Additionally, according to the panelists' evaluation, seasoning the olives fermented in 4% NaCl + 4% KCl, resulted in a decrease in bitterness and an improvement in the overall evaluation and flavor. Escherichia coli and Salmonella were not found in the olives produced.info:eu-repo/semantics/publishedVersio

    In vitro susceptibility of Plasmodium falciparum Welch field isolates to infusions prepared from Artemisia annua L. cultivated in the Brazilian Amazon

    Get PDF
    Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions

    Effect of the fermentation of whole soybean flour on the conversion of isoflavones from glycosides to aglycones

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The effect of fermentation of whole soybean flour (WSF) on the conversion of isoflavone glycosides to the aglycone form was analysed by liquid chromatography. WSF (200 g) with 35% moisture, was autoclaved at 121 degrees C for 20 min (AWSF), cooled and inoculated with 2 mL of spores of the fungus Aspergillus oryzae CCT 4359, and then incubated for 24 h and 48 h. The fermented flour was dried in a vacuum oven and 10 g of each flour, non-fermented and fermented, sieved and defatted. One gram of each flour was used for extraction of the isoflavones with 10 mL of an 80% methanol solution. Aliquots were injected into the HPLC under the following conditions: C18 column, 30 degrees C, gradient elution, mobile phase of (A) water: 5% acetic acid (v/v) and (B) methanol. The results showed that the FAWSF-48 h contained predominantly isoflavone aglycones (75.51%) when compared to the AWSF (6.94%) and WSF (2.67%). (C) 2011 Elsevier Ltd. All rights reserved.1283640644Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride

    No full text
    Blends of calcium. magnesium and potassium chloride were used to partially replace sodium chloride (50-75%) in reduced-fat mortadella formulations. The presence of calcium chloride reduced the emulsion stability, cooking yield, elasticity and cohesiveness and increased hardness; however, it yielded the best sensory acceptance when 50% NaCl was replaced by 25% CaCl(2) and 25% KCl. There was no effect of the salt substitutes on mortadella color, appearance and aroma. All salt combinations studied showed stable lipid oxidation during its shelf life. The use of a blend with 1% NaCl, 0.5% KCl and 0.5% MgCl(2) resulted in the best emulsion stability, but the worst scores for flavor. This study suggests that it is possible to reduce the sodium chloride concentration by 50% in reduced-fat mortadella using the studied salt combinations with necessary adjustments to optimize the sensory properties (MgCl(2) 25%; KCl 25%) or emulsion stability (CaCl(2) 25%; KCl 25%). (C) 2011 Elsevier Ltd. All rights reserved.89442643

    Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage

    No full text
    The stability of probiotic yogurts added with glucose oxidase and packaged in different plastic packaging systems that present different oxygen permeability transfer rates (0.09, 0.2, 0.39 and 0.75 mL O-2/day) was evaluated during 28 days of refrigerated storage. Probiotic stirred yogurts were submitted to physicochemical (pH, proteolytic activity, dissolved oxygen) and microbiological analyses (yogurt bacteria, Lactobacillus acidophilus and Bifidobacterium longum) as well as the content of organic acids (lactic and acetic acid) and aroma compound (diacetyl and acetaldehyde) were assessed. Overall, yogurts packaged in plastic containers with lower oxygen permeability rates showed a higher extent of post-acidification, proteolysis and organic acid production. Additionally, these samples also presented a lower content of dissolved oxygen and a lower decrease of the probiotic bacteria count. No influence on the production of aroma compounds was observed. Our results suggest that the use of packaging systems with different oxygen permeability rates coupled with the addition of glucose oxidase presented an interesting technological option to minimize the oxidative stress in probiotic yogurts. (C) 2013 Elsevier Ltd. All rights reserved.51272372
    corecore