2,164 research outputs found

    Quadratic pencil of Schrodinger operators with spectral singularities: Discrete spectrum and principal functions

    Get PDF
    In this article we investigated the spectrum of the quadratic pencil of Schrodinger operators L(lambda) generated in L-2(R+) by the equatio

    A Radiotracer study of the adsorption behaviour of aqueous Ba2+ ions on nonoparticles of zero-valent iron

    Get PDF
    Cataloged from PDF version of article.Recently, iron nanoparticles are increasingly being tested as adsorbents for various types of organic and inorganic pollutants. In this study, nanoparticles of zero-valent iron (NZVI) synthesized under atmospheric conditions were employed for the removal of Ba2+ ions in a concentration range 10-3 to 10-6 M. Throughout the study, 133Ba was used as a tracer to study the effects of time, concentration, and temperature. The obtained data was analyzed using various kinetic models and adsorption isotherms. Pseudo-second-order kinetics and Dubinin-Radushkevich isotherm model provided the best correlation with the obtained data. Observed thermodynamic parameters showed that the process is exothermic and hence enthalpy-driven. © 2007 Elsevier B.V. All rights reserved

    A deep residual architecture for skin lesion segmentation

    Get PDF
    In this paper, we propose an automatic approach to skin lesion region segmentation based on a deep learning architecture with multi-scale residual connections. The architecture of the proposed model is based on UNet [22] with residual connections to maximise the learning capability and performance of the network. The information lost in the encoder stages due to the max-pooling layer at each level is preserved through the multi-scale residual connections. To corroborate the efficacy of the proposed model, extensive experiments are conducted on the ISIC 2017 challenge dataset without using any external dermatologic image set. An extensive comparative analysis is presented with contemporary methodologies to highlight the promising performance of the proposed methodology

    Sorption of phenol and radioactive cesium onto surfactant modified insolubilized humic acid

    Get PDF
    In this study, the sorption behavior of two important contaminants, phenol and radioactive cesium (137Cs), onto surfactant modified insolubilized humic acid (SMIA) were investigated as a function of time, sorbate concentration utilizing the radiotracer method and UV-Vis spectroscopy. Phenol sorption process was well described by both Freundlich and Tempkin type isotherms, and cesium sorption was described by Freundlich and Dubinin-Radushkevich isotherms. It was found that SMIA adsorbs both cations and phenolic substances. Kinetic studies indicated that adsorption behavior of phenol obey the pseudo second order rate law. FTIR spectroscopic technique was used to understand the structural changes during modification process with surfactants. © 2010 Akadémiai Kiadó

    Test beam studies of the TRD prototype filled with different gas mixtures based on Xe, Kr, and Ar

    Full text link
    Towards the end of LHC Run1, gas leaks were observed in some parts of the Transition Radiation Tracker (TRT) of ATLAS. Due to these leaks, primary Xenon based gas mixture was replaced with Argon based mixture in various parts. Test-beam studies with a dedicated Transition Radiation Detector (TRD) prototype were carried out in 2015 in order to understand transition radiation performance with mixtures based on Argon and Krypton. We present and discuss the results of these test-beam studies with different active gas compositions.Comment: 5 pages,12 figures, The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016); Acknowledgments section correcte
    corecore