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and the boundary condition
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where U, V are complex valued functions and U is absolutely continuous in each
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1. INTRODUCTION

Let us consider the non-self-adjoint one-dimensional Schrodinger opera-¨
Ž .tor L generated in L R by the differential expression2 q

l y ' yy0 q V x y , x g RŽ . Ž . q

Ž .and the boundary condition y 0 s 0, where V is a complex valued
w xfunction. The spectral analysis of L has been investigated by Naimark 12 .

In this article, he has proved that some of the poles of the resolvent’s
kernel of L are not the eigenvalues of the operator. He has also shown

Ž w x.that those poles which are called spectral singularities by Schwartz 17
are on the continuous spectrum. Moreover, he has shown that the spectral
singularities play an important role in the discussion of the spectral
analysis of L, and if the condition

`
< <V x exp e x dx - `, e ) 0Ž . Ž .H

0

holds, then the eigenvalues and the spectral singularities are of a finite
number and each of them is of a finite multiplicity.

The effect of spectral singularities in the spectral expansion of the
w xoperator L in terms of principal functions has been investigated in 9 . In

w x14 , the dependence of the structure of spectral singularities of L on the
behavior of V at infinity has been considered. Some problems related to
spectral analysis of differential and some other types of operators with

w xspectral singularities have been discussed in 3]5, 10, 13, 15 .
Ž . Ž .Let us consider the operator L l generated in L R by the equation2 q

2yy0 q V x q 2lU x y l y s 0, x g R , 1.1Ž . Ž . Ž .q

and the boundary condition

y 0 s 0, 1.2Ž . Ž .
where U, V are complex-valued functions and U is absolutely continuous in

Ž .each finite subinterval of R . If U ' 0, then the operator L l reduces toq
Ž . 2Ž . Ž .the operator L. If we choose V x s yU x , then 1.1 will be reduced

into the radial form of the Klein]Gordon equation. Some problems of the
Ž .spectral theory of 1.1 and of the Klein]Gordon equation have been

w xinvestigated by several authors 1, 2, 6, 7, 8, 11 with real functions U
and V.

We also want to note that, the finiteness of the number of the eigenval-
Ž . w xues of L l has been given by the following technique in 7 . First it is

Ž .proved that the set of eigenvalues of L l is bounded in the complex plane
and is of countable, and their limit points lie on the real axis. Later,
assuming that there are no limit points of eigenvalues, it has been
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w xdetermined that the eigenvalues are of finite number. But in 7 the
functions U and V for which the set of eigenvalues has no limit points
have not been investigated. Using the technique of the uniqueness of
analytic functions, we proved that the eigenvalues and the spectral singu-
larities are of finite number.

Ž . Ž .In this paper, we discussed the spectrum of L l defined by 1.1 and
Ž .1.2 , and proved that this operator has a finite number of eigenvalues and
spectral singularities and that each of them is of a finite multiplicity, under
the conditions

' < < < <sup exp e x V x q U9 x - `, e ) 0,Ž . Ž .� 4Ž .
0Fx-`

and

lim U x s 0.Ž .
xª`

Afterward, the properties of the principal functions corresponding to the
Ž .eigenvalues and the spectral singularities of L l are obtained. If U is

absolutely continuous in every finite subinterval of R and satisfiesq

' < <sup exp e x U9 x - `, e ) 0Ž .� 4Ž .
0Fx-`

and

lim U x s 0,Ž .
xª`

then the eigenvalues and the spectral singularities of the Klein]Gordon
equation have similar properties.

Ž .In the particular case L of the operator L l , the results we have
w xobtained about the spectrum are better than the ones given by Lyance 9

w x w xand Naimark 12 , and are the same as the ones obtained by Pavlov 15 .
In the sequel, we use the notations

< <� 4 � 4C s l l g C, Im l ) 0 , C s l l g C, Im l - 0q y

<� 4 � 4R* s R _ 0 , C s l l g C, Im l G 0 ,q

<� 4C s l l g C, Im l F 0y

Ž Ž .. Ž Ž .. Ž Ž .. Ž Ž ..Furthermore, s L l , s L l , r L l , and R L l will denote thep ss
eigenvalues, the spectral singularities, the resolvent set, and the resolvent

Ž .of the operator L l , respectively.
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2. PRELIMINARIES

Let us suppose that the functions U and V satisfy the following condi-
tions:

` `
< < < < < <U x dx - `, x V x q U9 x dx - `. 2.1Ž . Ž . Ž . Ž .H H

0 0

Let us define the functions v, a , and b by
`

v x s U t dtŽ . Ž .H
x

`
< < < <a x s V t q U9 t dtŽ . Ž . Ž .H

x
2.2Ž .

`
< < < <b x s t V t q 2 U t dtŽ . Ž . Ž .H

x

w xJaulent and Jean 7 have obtained the following important result: if
Ž . Ž .2.1 holds, then 1.1 has the solution

`
iv Ž x . il x il tf x , l s e e q A x , t e dt 2.3Ž . Ž . Ž .H

x

for l g C and the solutionq
`

yi v Ž x . yil x yil tg x , l s e e q B x , t e dt 2.4Ž . Ž . Ž .H
x

Ž . Ž .for l g C ; moreover, the kernels A x, t and B x, t satisfy the inequal-y
ity

1 x q t
< < < <A x , t , B x , t F a exp b x . 2.5� 4Ž . Ž . Ž . Ž .ž /2 2

Ž . Ž .Therefore, the solutions f x, l and g x, l are analytic with respect to
l, in C and C , respectively, and are continuous up to the real axis.q y
Ž . Ž . w xf x, l and g x, l also satisfy the following asymptotic equalities 7 :

il xf x , l s e 1 q o 1 , l g C , x ª `Ž . Ž . q
2.6Ž .

il xf x , l s e il q o 1 , l g C , x ª `Ž . Ž .x q

yi l xg x , l s e 1 q o 1 , l g C , x ª `Ž . Ž . y
2.7Ž .

yi l xg x , l s e yil q o 1 , l g C , x ª `Ž . Ž .x y

Ž . Ž .From 2.3 and 2.4 we easily find

iv Ž x . il x < <f x , l s e e q o 1 , l g C , l ª `Ž . Ž . q
2.8Ž .

yi v Ž x . yil x < <g x , l s e e q o 1 , l g C , l ª `Ž . Ž . y



QUADRATIC PENCIL OF SCHRODINGER OPERATOR¨ 307

Ž . Ž . Ž .According to 2.6 and 2.7 , the Wronskian of the solutions f x, l and
Ž .g x, l is

w x w xW f , g s lim W f , g s y2 il 2.9Ž .
xª`

Ž . Ž .for l g R. So f x, l and g x, l provide the fundamental solutions of the
Ž .equation 1.1 for l g R*.

Ž . Ž .Let w x, l be the solution of 1.1 satisfying the initial conditions

w 0, l s 0, w 0, l s 1.Ž . Ž .x

Ž .It is obvious that the solution w x, l exists, is unique, and is an entire
w xfunction of l 7 .

3. EIGENVALUES AND SPECTRAL SINGULARITIES

Let us define

< <r l s l l g C , F l / 0 , r l s l l g C , G l / 0� 4 � 4Ž . Ž . Ž . Ž .1 q 2 y

where

F l [ f 0, l , G l [ g 0, l .Ž . Ž . Ž . Ž .
w xUsing the standard techniques 13 , we can show that

r L l s r l j r lŽ . Ž . Ž .Ž . 1 2

Ž Ž .. Ž .and for l g r L l the resolvent of L l is the integral operator defined
as

`

R L l c x s R x , t ; l c t dtŽ . Ž . Ž . Ž .Ž . H
0

Ž . Ž . Žfor c g L R , where the kernel R x, t; l i.e., the Green’s function for2 q
Ž ..L l is given by

R x , t ; l , l g r lŽ . Ž .1 1R x , t ; l s 3.1Ž . Ž .½ R x , t ; l , l g r lŽ . Ž .2 2

in which

1 f x , l w t , l 0 F t - xŽ . Ž .
R x , t ; l s 3.2Ž . Ž .1 ½ f t , l w x , l x F t - `F l Ž . Ž .Ž .

1 g x , l w t , l 0 F t - xŽ . Ž .
R x , t ; l s 3.3Ž . Ž .2 ½ g t , l w x , l x F t - `.G l Ž . Ž .Ž .
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Ž . Ž .From the asymptotic equalities 2.6 and 2.7 , we have

f ?, l , f ?, l g L R 3.4Ž . Ž . Ž . Ž .x 2 q

for each l g C andq

g ?, l , g ?, l g L R 3.5Ž . Ž . Ž . Ž .x 2 q

for each l g C .y

LEMMA 3.1.

Ž . Ž Ž .. � < Ž . 4 � < Ž . 4a s L l s l l g C , F l s 0 j l l g C , G l s 0 ,p q y

Ž . Ž Ž .. � < Ž . 4 � < Ž . 4b s L l s l l g R*, F l s 0 j l l g R*, G l s 0 .s s

Ž .Proof. a Obviously,

< <l l g C , F l s 0 j l l g C , G l s 0 ; s L l .� 4 � 4Ž . Ž . Ž .Ž .q y p

Ž Ž ..On the other hand, let us suppose that l g s L l and examine the0 p
following cases:

Ž . Ž Ž .. Ž .1 Let l g C . Since l g s L l , then 1.1 has a solution0 q 0 p
Ž . Ž . Ž .y x, l in L R for l s l that is nontrivial and y 0, l s 0. Since0 2 q 0 0

W y x , l , w x , l s 0,Ž . Ž .0 0

Ž . Ž .there exists a constant c / 0 such that y x, l s cw x, l . Then we have0 0

W f x , l , y x , l s cF l . 3.6Ž . Ž . Ž . Ž .0 0 0

Ž .But it is evident from 3.4 that

W f x , l , y x , l s lim W f x , l , y x , l s 0. 3.7Ž . Ž . Ž . Ž . Ž .0 0 0 0
xª`

Ž . Ž .From 3.6 and 3.7 we find

F l s 0.Ž .0

Ž .2 Let l g C . In a similar way, we can prove that0 y

G l s 0.Ž .0

Ž . Ž .3 Let l g R. In this case the general solution of 1.1 is0

y x , l s c f x , l q c g x , lŽ . Ž . Ž .0 1 0 2 0

Ž . Ž .for l s l . From 2.6 and 2.7 we get0

y x , l s c eil0 x q c eyi l0 x q o 1 as x ª `.Ž . Ž .0 1 2
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Ž . Ž .That is, y ?, l f L R . Hence0 2 q

s L l l R s f .Ž .Ž .p

Ž . Ž . Ž .Combining 1 , 2 , and 3 , we find

< <s L l ; l l g C , F l s 0 j l l g C , G l s 0 .� 4 � 4Ž . Ž . Ž .Ž .p q y

Ž .This completes the proof of a .

Ž .b Spectral singularities are the poles of the kernel of the resolvent,
Ž . Ž . Ž . Ž .but not the eigenvalues of the operator L l . From 3.1 ] 3.3 and part a

Ž .we obtain that the spectral singularities of L l are the zeros of F and G
Ž Ž ..on the real axis. We can easily show that 0 f s L l , which completess s

Ž .the proof of part b .

Note that from

W f x , l , g x , l s F l g 0, l y G l f 0, l s y2 il,Ž . Ž . Ž . Ž . Ž . Ž .x x

l g R,

we immediately get

< <l l g R*, F l s 0 l l l g R*, G l s 0 s f . 3.8� 4 � 4Ž . Ž . Ž .

To investigate the quantitative properties of the eigenvalues and the
Ž .spectral singularities of L l , we need to discuss the quantitative proper-

ties of the zeros of F and G in C and C , respectively. For the sake ofq y
simplicity, we will consider only the zeros of F in C . A similar procedureq
may also be employed for the zeros of G in C .y

Let us define

< <Q s l l g C , F l s 0 , Q s l l g R, F l s 0 .� 4� 4Ž . Ž .1 q 2

Ž .LEMMA 3.2. a The set Q is bounded and has at most a countable1
number of elements, and its limit points can lie only in a bounded subinter̈ al
of the real axis.

Ž .b The set Q is compact and its linear Lebesque measure is zero.2

Ž .Proof. From 2.8 we get

iv Ž0. < <F l s e q o 1 , l g C , l ª `. 3.9Ž . Ž . Ž .q

Ž .The asymptotic equality 3.9 shows the boundedness of the sets Q and1
Q . From the analyticity of the function F in C , we get that Q has at2 q 1
most countable numbers of elements. By the uniqueness of analytic
functions we find that the limit points of Q can lie only in a bounded1
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subinterval of the real axis. The closedness and the property of having
linear Lebesgue measure zero of the set Q can be obtained from the2

w xuniqueness theorem of the analytic functions 16 .

From Lemmas 3.1 and 3.2 we get the following.

Ž .THEOREM 3.3. The sets of eigen¨alues and spectral singularities of L l
are bounded and are, at most, countable, and their limit points can lie only in

Ž .a bounded subinter̈ al of the real axis if the condition 2.1 holds.

Note. For the moment we want to start with ‘‘ Assumption III:F and G
w xhas no real zeros’’ in 7 , that is,

s L l s f .Ž .Ž .s s

In this case, from Lemma 3.2 and Theorem 3.3 we may derive that the
number of eigenvalues is finite, which corresponds to the technique given

w xin 7 . But it has not been clarified for which functions U and V Assump-
tion III holds. So Assumption III does not seem to be natural. Hence we
will prove by another method that the number of the eigenvalues and the

Ž .spectral singularities of L l are finite, without employing Assumption III.
Ž .Up to now we have assumed that condition 2.1 holds. In the rest of the

article the assumptions we will use are

' < < < <lim U x s 0, sup exp e x V x q U9 x - `, e ) 0.Ž . Ž . Ž .� 4Ž .
xª` 0Fx-`

3.10Ž .

Ž . Ž .From 2.2 and 3.10 we have

e e' 'a x F c exp y x , b x F c exp y x , 3.11Ž . Ž . Ž .0 0ž / ž /2 2

Ž . Ž .where c ) 0 is constant. By 2.5 and 3.11 we get0

e x q t
< < < <A x , t , B x , t F c exp y , 3.12Ž . Ž . Ž .(ž /2 2

where c ) 0.
Ž .We have seen that whenever condition 2.1 holds, the function F is

Ž .analytic in C and continuous up to the real axis. It is obvious from 3.12q
Ž .that if the conditions 3.10 hold, then all derivatives of F are continuous

up to the real axis. So the inequalities

Ž r .< <F l F M , l g C , r s 0, 1, 2, . . . 3.13Ž . Ž .r q
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hold, where

` e
rq1 r 'M s 2 c t exp y t dt , r s 1, 2, . . . 3.14Ž .Hr ž /20

and

` `
< <M s exp y ImU t dt q A 0, t dt ,Ž . Ž .H H0 ½ 5

0 0

provided that c ) 0 is a constant.
Let us indicate the set of all limit points of Q and Q by Q and Q ,1 2 3 4

respectively, and the set of all zeros of F with infinite multiplicity in Cq
by Q .5

From the uniqueness theorem of analytic functions, it is obvious that

Q ; Q , Q ; Q , Q ; Q .3 2 4 2 5 2

LEMMA 3.4. Q ; Q , Q ; Q .3 5 4 5

The proof of this lemma can be obtained by use of the continuity of all
derivatives of F up to the real axis.

We will use the following uniqueness theorem for the analytic functions
on the upper half-plane to prove the next result.

Žw x.THEOREM 3.5 14 . Let us assume that the function g is analytic in C ,q
all of its derï atï es are continuous up to the real axis, and there exist N ) 0
such that

Ž r .< < < <g l F M , r s 0, 1, 2, . . . , l g C , l - 2 N , 3.15Ž . Ž .r q

and

< < < <`ln g x ln g xŽ . Ž .yN
dx - `, dx - ` 3.16Ž .H H2 21 q x 1 q xy` N

hold. If the set P with linear Lebesque measure zero is the set of all zeros of the
function g with infinity multiplicity and if

h
ln E s dm P s y`Ž . Ž .H s

0

Ž . Ž . r Ž .holds, then g l ' 0, where E s s inf M s rr!, and r s 0, 1, 2, . . . , m Pr r s
is the Lebesque measure of the s-neighborhood of P and h is an arbitrary
positï e constant.
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LEMMA 3.6. Q s f.5

Ž .Proof. It is trivial from Lemma 3.2 and 3.13 that F satisfies the
Ž . Ž .conditions 3.15 and 3.16 . Since the function F is not identically equal to

zero, then by Theorem 3.5, Q satisfies the condition5

h
ln E s dm Q ) y`, 3.17Ž . Ž . Ž .H 5, s

0

Ž . r Ž .where E s s inf M s rr!, m Q is the Lebesque measure of the s-r r 5, s
Ž .neighborhood of Q , and the constant M is defined by 3.14 .5 r

Now we will obtain the following estimates for M :r

` e
rq1 r 'M s 2 c t exp y t dtHr ž /20

F Bbrr r r !, 3.18Ž .
Ž .where B and b are constants depending on c and e . Substituting 3.18 in

Ž .the definition of E s , we arrive at

M sr
r r r r y1 y1 y1� 4 � 4E s s inf F B inf b s r F B exp yb e s ,Ž .

r !r r

Ž .or by 3.17 ,

1h
dm Q - `. 3.19Ž . Ž .H 5, ss0

Ž . Ž .The inequality 3.19 holds for an arbitrary s, if and only if m Q s 0 or5, s
Q s f.5

LEMMA 3.7. The function F has a finite number of zeros with finite
multiplicity in C .q

Proof. Lemmas 3.4 and 3.6 give Q s Q s f. So the bounded sets Q3 4 1
Ž .and Q have no limit points see Lemma 3.2 , i.e., the function F has only2

a finite number of zeros in C . Since Q s f, these zeros are of finiteq 5
multiplicity.

The discussions given above for F may be repeated for G. Hence we
obtain the following.

LEMMA 3.8. The function G has a finite number of zeros with finite
multiplicity in C .y

Ž . Ž .DEFINITION 3.9. The multiplicity of a zero of F or G in C or C isq y
called the multiplicity of the corresponding eigenvalue or spectral singular-

Ž .ity of L l .
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Lemmas 3.1, 3.7, and 3.8 give the following.

Ž .THEOREM 3.10. The operator L l has a finite number of eigen¨alues and
spectral singularities, and each of them is of finite multiplicity if the condition
Ž .3.10 holds.

4. PRINCIPAL FUNCTIONS

Ž . q qIn this section we assume that 3.10 holds. Let l , . . . , l and1 j
my , . . . , my denote the zeros of F in C and G in C with multiplicities1 k q y
mq , . . . , mq and my , . . . , my , respectively. Similarly, let l , . . . , l and1 j 1 k 1 p
m , . . . , m be the zeros of F and G on the real axis with multiplicities1 q
m , . . . , m and n , . . . , n , respectively. It is trivial that1 p 1 q

 n dn

W f x , l , w x , l s F l s 0 4.1Ž . Ž . Ž . Ž .n n½ 5 ½ 5q ql dllsl lsli i

for n s 0, 1, . . . , mq y 1, i s 1, 2, . . . , j, andi

 n dn

W g x , l , w x , l s G l s 0 4.2Ž . Ž . Ž . Ž .n n½ 5 ½ 5y yl dllsm lsml l

for n s 0, 1, . . . , my y 1, l s 1, 2, . . . , k. If n s n s 0, we getl

w x , lq s a lq f x , lq , i s 1, 2, . . . , j, 4.3Ž .Ž . Ž . Ž .i 0 i i

w x , my s b my g x , my , l s 1, 2, . . . , k . 4.4Ž .Ž . Ž . Ž .l 0 l l

Ž q. Ž y.So a l / 0, b m / 0.0 i 0 l

THEOREM 4.1. The formulas

n n k n
w x , l s a f x , l 4.5Ž . Ž . Ž .Ý nykn k½ 5 ž / ½ 5q k ql llsl lsli ks0 i

for n s 0, 1, . . . , mq y 1, i s 1, 2, . . . , j, andi

n n j n
w x , l s b g x , l , 4.6Ž . Ž . Ž .Ý nyjn j½ 5 ½ 5ž /jy yl llsm lsmi js0 i

for n s 0, 1, . . . , my y 1, l s 1, 2, . . . , k hold, where the constantsl
a , a , . . . , a and b , b , . . . , b depend on lq and my , respectï ely.0 1 n 0 1 n i l
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Ž .Proof. Let us start with equality 4.5 . We will utilize mathematical
Ž .induction. For n s 0, the proof is trivial from 4.3 . Let us assume that for

q Ž .1 F n F m y 2 the equality 4.5 holds, i.e.,0 i

nn k0 0 n0 qw x , l s a l f x , l 4.7Ž . Ž . Ž .Ž .Ý n yk in k½ 5 0 ½ 50 ž /q ql lklsl lsli ks0 i

Ž . Ž .Now we will prove that 4.5 also holds for n q 1. If y x, l is a solution0
Ž . n n Ž .of the equation 1.1 , then  rl y x, l satisfies

d2  n
2y q V x q 2lU x y l y x , lŽ . Ž . Ž .n2½ 5 ldx

 ny1  ny2

s 2ln y x , l q n n y 1 y x , lŽ . Ž . Ž .ny1 ny2l l

 ny1

y 2nU x y x , l 4.8Ž . Ž . Ž .ny1l

Ž . Ž q. Ž q. Ž .Writing 4.8 for w x, l and f x, l , and using 4.7 , we findi i

d2
2q q qy q V x q 2l U x y l F x , l s 0,Ž . Ž . Ž . Ž .i i n q1 i2 0½ 5dx

where

 n0q1
qF x , l s w x , lŽ .Ž .n q1 i n q10 ½ 50 ql lsl i

n q1 k0 n q 10 qy a l f x , l .Ž .Ž .Ý n q1yk i k0 ½ 5ž / qlk lslks1 i

Ž .From 4.1 we have

 n0q1
q qW f x , l , F x , l s W f x , l , w x , l s 0.Ž . Ž .Ž . Ž .i n q1 i n q10 ½ 50 ql lsl i

Ž q.Hence there exists a constant a l such thatn q1 i0

F x , lq s a lq f x , lq .Ž . Ž . Ž .n q1 i n q1 i i0 0

Ž .This shows that 4.5 holds for n s n q 1. In a similar way, we can prove0
Ž .that 4.6 also holds.
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THEOREM 4.2.

 n
qw ?, l g L R , n s 0, 1, . . . , m y 1,Ž . Ž .2 q in½ 5 ql lsl i

i s 1, 2, . . . , j, 4.9Ž .
 n

yw ?, l g L R , n s 0, 1, . . . , m y 1,Ž . Ž .2 q ln½ 5 yl lsm i

l s 1, 2, . . . , k . 4.10Ž .

Ž . Ž .Proof. From 2.3 and 3.12 we obtain

n
`

n q< <f x , l F x exp U t dt exp yxIml� 4Ž . Ž .H in ½ 5½ 5 ql 0lsl i

`e
n q'q c exp y x t exp ytIml dt� 4H iž /2 0

q Ž . Ž .for n s 0, 1, . . . , m y 1, i s 1, 2, . . . , j, which gives 4.9 using 4.5 .i
Ž .Equation 4.10 may be derived analogously.

  mq
i y1

qw x , l , w x , l , . . . , w x , lŽ . Ž .Ž . qi m y1½ 5 ½ 5iq ql llsl lsli i

and

  my
l y1

yw x , m , w x , l , . . . , w x , lŽ . Ž .Ž . yl m y1½ 5 ½ 5ly yl llsm lsml l

are called the principal functions corresponding to eigenvalues l s lq ,i
y Ž .i s 1, 2, . . . , j, and l s m , l s 1, 2, . . . , k of L l , respectively.l

Ž . ŽIf l , . . . , l and m , . . . , m are spectral singularities of L l i.e., the1 p 1 q
.real zeros of F and G , we then obtain

 n dn

W f x , l , w x , l s F l s 0Ž . Ž . Ž .n n½ 5 ½ 5l dllsl lsli i

for n s 0, 1, . . . , m y 1, i s 1, 2, . . . , p, andi

 n dn

W g x , l , w x , l s G l s 0,Ž . Ž . Ž .n n½ 5 ½ 5l dllsm lsml l

for n s 0, 1, . . . , n y 1, l s 1, 2, . . . , q. In a way similar to that of the proofl
of Theorem 4.1, we have the following.
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Remark 4.3. The formulas

n n k n
w x , l s d l f x , l 4.11Ž . Ž . Ž . Ž .Ý nyk in k½ 5 ž / ½ 5kl llsl lsli ks0 i

for n s 0, 1, . . . , m y 1, i s 1, 2, . . . , p andi

n n j n
w x , l s h m g x , l , 4.12Ž . Ž . Ž . Ž .Ý nyj ln j½ 5 ½ 5ž /jl llsm lsml ks0 l

for n s 0, 1, . . . , n y 1, l s 1, 2, . . . , q hold.l

LEMMA 4.4.

 n

w ?, l f L R , n s 0, 1, . . . , m y 1,Ž . Ž .2 q in½ 5l lsl i

i s 1, 2, . . . , p , 4.13Ž .
and

 n

w ?, l f L R , n s 0, 1, . . . , n y 1,Ž . Ž .2 q ln½ 5l lsm l

l s 1, 2, . . . , q. 4.14Ž .

Ž . Ž . Ž .The proof of this lemma may easily be obtained from 2.3 , 2.4 , 4.11 ,
Ž .and 4.12 . Now let us introduce the Hilbert spaces:

` 2 n 2< <H s f : 1 q x f x dx - ` , n s 0, 1, . . .Ž . Ž .Hn ½ 5
0

` y2 n 2< <H s g : 1 q x g x dx - ` , n s 0, 1, . . .Ž . Ž .Hyn ½ 5
0

with

` `2 n y2 n2 2 2 25 5 < < 5 5 < <f s 1 q x f x dx ; g s 1 q x g x dx ,Ž . Ž . Ž . Ž .n H yn H
0 0

respectively. It is evident that

H s L R , H m L R m H , n s 1, 2, . . . .Ž . Ž .0 2 q n 2 q yn

Obviously H is isomorphic to the dual of H .yn n



QUADRATIC PENCIL OF SCHRODINGER OPERATOR¨ 317

THEOREM 4.5.

 n

w ?, l g H , n s 0, 1, . . . , m y 1,Ž . yŽ nq1. in½ 5l lsl i

i s 1, 2, . . . , p , 4.15Ž .

and

 n

w ?, l g H , n s 0, 1, . . . , n y 1,Ž . yŽnq1. ln½ 5l lsm l

l s 1, 2, . . . , q. 4.16Ž .

Ž .Proof. From 2.3 we obtain

n
` ` nn < < < <f x , l F x exp y ImU t q t A x , t dt.Ž . Ž . Ž .H Hn ½ 5½ 5l 0 xlsl i

Ž . Ž .By the definition of the space H and using 3.12 and 4.11 , weyŽ nq1.
Ž . Ž .arrive at 4.15 . In the same manner, we can show that 4.16 also holds.

  m iy1

w x , l , w x , l , . . . , w x , lŽ . Ž . Ž .i m y1½ 5 ½ 5il llsl lsli i

and

  nly1

w x , m , w x , l , . . . , w x , lŽ . Ž . Ž .l n y1½ 5 ½ 5ll llsm lsml l

are called the principal functions corresponding to the spectral singulari-
Ž .ties l s l , i s 1, 2, . . . , p, and l s m , l s 1, 2, . . . , q of L l , respec-i l

tively.
Let us choose n so that0

� 4n s max m , . . . , m , n , . . . , n .0 1 p 1 q

Then

H m L R m H .Ž .n q1 2 q yŽn q1.0 0

By Theorem 4.5 we have the following.
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Remark 4.6.

 n

w ?, l g H , n s 0, 1, . . . , m y 1,Ž . yŽ n q1. in½ 5 0l lsl i

i s 1, 2, . . . , p ,

 n

w ?, l g H , n s 0, 1, . . . , n y 1,Ž . yŽ n q1. ln½ 5 0l lsm l

l s 1, 2, . . . , q.

Ž .In a forthcoming article we will show that the spectral expansion of L l
converges in the sense of H for every function in H .yŽ n q1. n q10 0

5. KLEIN]GORDON EQUATION

Ž . 2Ž .As we have pointed out previously, if we choose V x s yU x , then
Ž .the boundary value problem 1.1]1.2 is reduced to

2y0 q l y U x y s 0, x g R 5.1Ž . Ž .q

y 0 s 0, 5.2Ž . Ž .

where U is a complex-valued and absolutely continuous function in each
Ž .finite subinterval of R . Equation 5.1 is called the Klein]Gordon s-waveq

Ž .equation for a particle of zero mass with static potential U x . It is trivial
Ž .that the condition 3.10 assumes the form

' < <sup exp e x U9 x - `, e ) 0Ž .� 4Ž .
0Fx-`

lim U x s 0 5.3Ž . Ž .
xª`

Ž .for 5.1 . We can deduce the following from Theorem 3.10.

Ž . Ž .THEOREM 5.1. The boundary ¨alue problem 5.1 , 5.2 has a finite
number of eigen¨alues and spectral singularities, and each of them is of finite

Ž .multiplicity if the conditions 5.3 hold.

Let us also note that if the function U is real and analytic and vanishes
Ž . Ž .rapidly as x ª `, then the eigenvalues of 5.1 , 5.2 have been discussed

w xpreviously 2 .
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¨6. ONE-DIMENSIONAL SCHRODINGER OPERATOR

Ž . Ž . Ž .If U x ' 0 in 1.1 , the operator L l is reduced to L, which was given
Ž .in the Introduction. In this case the condition 3.10 will assume the form

' < <sup exp e x V x - `, e ) 0. 6.1Ž . Ž .� 4Ž .
0Fx-`

Hence from Theorem 3.10 we get the following.

( )THEOREM 6.1. Under the condition 6.1 , the operator L has a finite
number of eigen¨alues and spectral singularities, and each of them is of finite
multiplicity.

w x w xThe same result has been obtained by Lyance 9 and Naimark 12
under the stronger assumption

`

V x exp e x dx - `, e ) 0.Ž . Ž .H
0

Ž . w xThe condition 6.1 has been obtained in Pavlov 15 .
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