357 research outputs found

    Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts

    Get PDF
    The authors acknowledge the Czech Science Foundation (P106/12/G015) for the financial support.Selective oxidation of sulphides is a straightforward method of preparation of organic sulphoxides and sulphones, which are important chemical intermediates and building blocks of pharmaceuticals and agrochemicals. Oxidation of methylphenyl sulphide (MPS), diphenyl sulphide (Ph2S), and dibenzothiophene (DBTH) over lamellar titanosilicate catalysts with the MFI and UTL-derived topology was investigated with hydrogen peroxide as the oxidant. Lamellar titanosilicates combine the advantages of crystalline zeolites and mesoporous molecular sieves due to accessible active sites located on the external surface of their layers. The selectivity of the MPS oxidation to methylphenyl sulphoxide is driven by the diffusion restrictions in the catalyst. A methylphenyl sulphoxide selectivity of 95% at 40% conversion was achieved using the Ti-IPC-1-PI catalyst together with an outstanding TONtot = 1418 after 30 min. The selectivity can be adjusted also by dosing of the oxidant to keep its concentration low during the reaction. The silica-titania pillared TS-1-PITi catalyst showed the highest potential of the tested catalysts in oxidative desulphuration, easily oxidising the DBTH to dibenzothiothene sulphone.PostprintPeer reviewe

    Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts

    Get PDF
    The authors acknowledge the Czech Science Foundation (P106/12/G015) for the financial support.Selective oxidation of sulphides is a straightforward method of preparation of organic sulphoxides and sulphones, which are important chemical intermediates and building blocks of pharmaceuticals and agrochemicals. Oxidation of methylphenyl sulphide (MPS), diphenyl sulphide (Ph2S), and dibenzothiophene (DBTH) over lamellar titanosilicate catalysts with the MFI and UTL-derived topology was investigated with hydrogen peroxide as the oxidant. Lamellar titanosilicates combine the advantages of crystalline zeolites and mesoporous molecular sieves due to accessible active sites located on the external surface of their layers. The selectivity of the MPS oxidation to methylphenyl sulphoxide is driven by the diffusion restrictions in the catalyst. A methylphenyl sulphoxide selectivity of 95% at 40% conversion was achieved using the Ti-IPC-1-PI catalyst together with an outstanding TONtot = 1418 after 30 min. The selectivity can be adjusted also by dosing of the oxidant to keep its concentration low during the reaction. The silica-titania pillared TS-1-PITi catalyst showed the highest potential of the tested catalysts in oxidative desulphuration, easily oxidising the DBTH to dibenzothiothene sulphone.PostprintPeer reviewe

    The assembly-disassembly-organization-reassembly mechanism for 3D-2D-3D transformation of germanosilicate IWW zeolite

    Get PDF
    J.Č. thanks the Czech Science Foundation for the support of this research (P106/12/G015). R.E.M. thanks the Royal Society for provision of an industry fellowship and the E.P.S.R.C. for funding (EP/K025112/1). A.B.P. acknowledges the support of the European Community under a Marie Curie Intra‐European Fellowship.Hydrolysis of germanosilicate zeolites with the IWW structure shows two different outcomes depending on the composition of the starting materials. Ge-rich IWW (Si/Ge=3.1) is disassembled into a layered material (IPC-5P), which can be reassembled into an almost pure silica IWW on treatment with diethoxydimethylsilane. Ge-poor IWW (Si/Ge=6.4) is not completely disassembled on hydrolysis, but retains some 3D connectivity. This structure can be reassembled into IWW by incorporation of Al to fill the defects left when the Ge is removed.Publisher PDFPeer reviewe

    Reshaping cortical activity with subthalamic stimulation in Parkinson's disease during finger tapping and gait mapped by near infrared spectroscopy

    No full text
    Exploration of motor cortex activity is essential to understanding the pathophysiology in Parkinson's Disease (PD), but only simple motor tasks can be investigated using a fMRI or PET. We aim to investigate the cortical activity of PD patients during a complex motor task (gait) to verify the impact of deep brain stimulation in the subthalamic nucleus (DBS-STN) by using Near-Infrared-Spectroscopy (NIRS). NIRS is a neuroimaging method of brain cortical activity using low-energy optical radiation to detect local changes in (de)oxyhemoglobin concentration. We used a multichannel portable NIRS during finger tapping (FT) and gait. To determine the signal activity, our methodology consisted of a pre-processing phase for the raw signal, followed by statistical analysis based on a general linear model. Processed recordings from 9 patients were statistically compared between the on and off states of DBS-STN. DBS-STN led to an increased activity in the contralateral motor cortex areas during FT. During gait, we observed a concentration of activity towards the cortex central area in the "stimulation-on" state. Our study shows how NIRS can be used to detect functional changes in the cortex of patients with PD with DBS-STN and indicates its future use for applications unsuited for PET and a fMRI

    DNA end resection by Dna2–Sgs1–RPA and its stimulation by Top3–Rmi1 and Mre11–Rad50–Xrs2

    Get PDF
    The repair of DNA double-strand breaks (DSBs) by homologous recombination requires processing of broken ends. For repair to start, the DSB must first be resected to generate a 3′-single-stranded DNA (ssDNA) overhang, which becomes a substrate for the DNA strand exchange protein, Rad51 (ref. 1). Genetic studies have implicated a multitude of proteins in the process, including helicases, nucleases and topoisomerases. Here we biochemically reconstitute elements of the resection process and reveal that it requires the nuclease Dna2, the RecQ-family helicase Sgs1 and the ssDNA-binding protein replication protein-A (RPA). We establish that Dna2, Sgs1 and RPA constitute a minimal protein complex capable of DNA resection in vitro. Sgs1 helicase unwinds the DNA to produce an intermediate that is digested by Dna2, and RPA stimulates DNA unwinding by Sgs1 in a species-specific manner. Interestingly, RPA is also required both to direct Dna2 nucleolytic activity to the 5′-terminated strand of the DNA break and to inhibit 3′ to 5′ degradation by Dna2, actions that generate and protect the 3′-ssDNA overhang, respectively. In addition to this core machinery, we establish that both the topoisomerase 3 (Top3) and Rmi1 complex and the Mre11–Rad50–Xrs2 complex (MRX) have important roles as stimulatory components. Stimulation of end resection by the Top3–Rmi1 heterodimer and the MRX proteins is by complex formation with Sgs1 (refs 5, 6), which unexpectedly stimulates DNA unwinding. We suggest that Top3–Rmi1 and MRX are important for recruitment of the Sgs1–Dna2 complex to DSBs. Our experiments provide a mechanistic framework for understanding the initial steps of recombinational DNA repair in eukaryotes

    MRNIP is a replication fork protection factor

    Get PDF
    The remodeling of stalled replication forks to form four-way DNA junctions is an important component of the replication stress response. Nascent DNA at the regressed arms of these reversed forks is protected by RAD51 and the tumor suppressors BRCA1/2, and when this function is compromised, stalled forks undergo pathological MRE11-dependent degradation, leading to chromosomal instability. However, the mechanisms regulating MRE11 functions at reversed forks are currently unclear. Here, we identify the MRE11-binding protein MRNIP as a novel fork protection factor that directly binds to MRE11 and specifically represses its exonuclease activity. The loss of MRNIP results in impaired replication fork progression, MRE11 exonuclease–dependent degradation of reversed forks, persistence of underreplicated genomic regions, chemosensitivity, and chromosome instability. Our findings identify MRNIP as a novel regulator of MRE11 at reversed forks and provide evidence that regulation of specific MRE11 nuclease activities ensures protection of nascent DNA and thereby genome integrity

    Synthesis of ‘unfeasible’ zeolites

    Get PDF
    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly–disassembly–organization–reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications

    In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6

    Get PDF
    R.E.M. and M.N. thank the Royal Society and the E.P.S.R.C. (Grants EP/L014475/1, EP/K025112/1 and EP/K005499/1) for funding work in this area. R.E.M. and J.Č. acknowledge the Czech Science Foundation for the project P106/12/G015 and OP VVV "Excellent Research Teams", project No. CZ.02.1.01/0.0/0.0/15_003/0000417 - CUCAM. S.E.A. would like to thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”) and the Royal Society and Wolfson Foundation for a merit award. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC (contract reference PR140003), as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF). W.A.S. and D.S.W. acknowledge the Research Council of Norway and NOTUR are acknowledged for providing the computer time at the Norwegian supercomputer facilities (under the project number NN2875k).The assembly–disassembly–organization–reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.PostprintPeer reviewe

    Prenatal arachidonic acid exposure and selected immune-related variables in childhood

    Get PDF
    Arachidonic acid (AA) is considered essential in fetal development and some of its metabolites are thought to be important mediators of the immune responses. Therefore, we studied whether prenatal exposure to AA is associated with some immune-related clinical conditions and plasma markers in childhood. In 280 children aged 7 years, atopy, lung function and plasma inflammation markers were measured and their relationships with early AA exposure were studied by linear and logistic regression analyses. AA exposure was deduced from AA concentrations in plasma phospholipids of the mothers collected at several time points during pregnancy and at delivery, and in umbilical cord plasma and arterial and venous wall phospholipids. In unadjusted regression analyses, significant positive associations were observed between maternal AA concentrations at 16 and 32 weeks of pregnancy (proxies for fetal AA exposure) and peak expiratory flow decline after maximal physical exercise and plasma fibrinogen concentrations of their children, respectively. However, after correction for relevant covariables, only trends remained. A significant negative relationship was observed between AA concentrations in cord plasma (reflecting prenatal AA exposure) and the average daily amplitude of peak expiratory flow at rest, which lost significance after appropriate adjustment. Because of these few, weak and inconsistent relationships, a major impact of early-life exposure to AA on atopy, lung function and selected plasma inflammation markers of children at 7 years of age seems unlikely
    • …
    corecore