7 research outputs found

    Valor diagnóstico del perfil mineral en el perro

    Get PDF
    Este estudio fue diseñado para (i) establecer intervalos de referencia de microminarales (ii) evaluar si varían con diferentes patologías; (iii) evaluar la relación con marcadores bioquímicos, y (iv) evaluar los niveles hepáticos de Cu y sus interacciones con otros elementos en perros con hepatitis crónica. Se determinaron las concentraciones de elementos esenciales (Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) y tóxicos (As, Cd, Hg, Pb) mediante ICP-MS. Este estudio, ha permitido establecer rangos de referencia e identificar alteraciones clínicas asociadas con variaciones de microminerales y de marcadores bioquímicos. Los perros con hepatitis crónica además de altos niveles de Cu en hígado presentan también niveles altos de Co, Mn y Zn

    Determination of Essential and Toxic Elements in Cattle Blood: Serum vs Plasma

    Get PDF
    This study was designed to evaluate the influence of type of blood sample (serum or plasma) on essential and toxic element analysis in cattle. Paired plasma and serum samples (n = 20) were acid digested, and the concentrations of As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn. Mo, Ni, P, Pb, Sb, Se, Sr and Zn were determined by inductively coupled plasma mass spectrometry (ICP-MS). The study findings indicate that plasma and serum samples appear suitable and interchangeable for the determination of most of the essential and toxic elements in blood in cattle. The only exceptions are Cu and Se, the concentrations of which were significantly lower (40.9 and 29.9% respectively) in serum than in plasma. Some of the Cu in blood samples from bovine ruminants is known to be sequestered during clotting. However, further research on Se in ruminants and other animal species is warranted. Finally, the significantly higher Mn (9.9%) concentrations in serum than in plasma may have been caused by haemolysis of some samples. Special attention should be paid to preventing haemolysis of samples during collection and processing, in order to prevent overestimation of elements present at high concentrations inside erythrocytes (i.e., Fe, Mn and Zn)This study was supported by the Spanish Government (project code AGL2010-21026). The authors thank the staff of Rede de Infraestruturas de Apoio á Investigación e Desenvolvemento Tecnolóxico (RIAIDT) for analysing the samplesS

    Das Brezis-Nirenberg-Problem auf der Sphäre Sn

    Get PDF
    In dieser Arbeit betrachten wir einf¨uhrend im Kapitel 1 nichtlineare partielle Differenzialgleichungen von der Form: −"pu − b(x)up−1 = f(x, u) + c(x) up!−1 in" u > 0 in" u = 0 auf !", wobei "pu = div(a(x)|#u|p−2#u) mit a(x) > 0 in " und 1 < p < n. Das Gebiet " sei beschr¨ankt in Rn mit n 3 und p" = n p n−p der kritische Sobolev- Exponent. Da die Sobolev-Einbettung von W1,p 0 (") nach Lp!(") nur stetig und nicht mehr kompakt ist, lassen sich die Standard-Methoden der Variationsrechnung nicht anwenden. Wir werden jedoch im Kapitel 1 zeigen, dass das zum obigen Problem geh¨orige Funktional # einer lokalen Kompaktheitsbedingung gen¨ugt. Mit Hilfe dieser Kompaktheitseigenschaft und dem Mountainpass-Lemma bzw. dem Variationsprinzip von Ekeland werden wir die Existenz von schwachen L¨osungen beweisen. Die Beweismethode h¨angt vom Wachstum der St¨orung f(x, ·) in null ab. Im Hauptteil der Arbeit, dem Kapitel 2, wenden wir uns dem Brezis- Nirenberg-Problem auf der Sph¨are zu. Unter dem (verallgemeinerten) Brezis- Nirenberg-Problem auf der Sph¨are Sn verstehen wir das Problem −"p,Snu − " uq−1 = up!−1 in"# % Sn u > 0 in"# u = 0 auf !"#, (&) wobei "# '= Sn ein Gebiet auf der Sph¨are Sn ist. Die Parameter abh¨angige St¨orung sei von niedrigerer Ordnung, daher gilt 1 < q < p". Das Problem hat seine urspr¨ungliche Motivation im Yamabe Problem (siehe Aubin [3]). Brezis und Nirenberg untersuchten in der Arbeit [13] das nichtlineare elliptische Randwertproblem f¨ur den Laplace-Operator in beschr ¨ankten Gebieten im euklidischen Raum Rn. Ebenfalls f¨ur den Laplace- Operator untersuchten Ambrosetti, Brezis und Cerami in [2] das in null superlineare Randwertproblem −"u − " uq−1 = u n+2 n−2 in" % Rn u > 0 in" u = 0 auf !", mit 1 < q < 2. Sie beweisen die Existenz von zwei positiven L¨osungen. Das in null superlineare p-Laplace Problem behandelten Azorero und Alonso in [24] und [26]. Unter geeigneten Voraussetzungen konnten sie ebenfalls die Existenz von zwei positiven L¨osungen beweisen. Im Artikel [10] stellt Brezis fest, dass die Existenz von L¨osungen f¨ur das Brezis-Nirenberg-Problem einerseits von ", andererseits aber auch von der Topologie des Gebiets " abh¨angt. Ausgehend davon betrachteten Bandle, Brillard und Flucher [5] dieses Problem auf Gebieten in R¨aumen konstanter skalarer Kr¨ummung. In ihrer Doktorarbeit [40] untersuchte S. Stapelkamp das Brezis-Nirenberg Problem im hyperbolischen Raum Hn und in [4] untersuchten Bandle und Benguria die Existenz und Nichtexistenz von rotationssymmetrischen L¨osungen f¨ur p = q = 2 in geod¨atischen Kugeln auf der S3. In dem Zusammenhang konnten Bandle und Benguria ein sehr interessantes Ph¨anomen beobachten. So beschrieben sie in [4] als erste numerisch berechnete L¨osungen in grossen Kugeln f¨ur " ( 0. Das Kapitel 2 ist folgendermassen aufgebaut: In einem ersten Schritt wird im Kapitel 2.3 ein Existenzresultat von Bandle, Fleckinger und de Th´elin [6] f¨ur " > 0 verallgemeinert. Im Kapitel 2.4 wird die Nichtexistenz von L¨osungen f¨ur (&) betrachtet. Es zeigt sich, dass aus der Pohozaev- Identit¨at f¨ur den p-Laplace-Beltrami-Operator in sternf¨ormigen Gebieten keine Aussage gewonnen werden kann. Wir werden uns daher auf rotationssymmetrische L¨osungen in geod¨atischen Kugeln konzentrieren. Das Resultat schliesst eine L¨ucke zwischen Existenz und Nichtexistenz f¨ur p ) !n+2 3 , n+1 2 " der Arbeit von Bandle, Fleckinger und de Th´elin [6]. Im Folgenden werden die F¨alle abh¨angig von p ! q f¨ur das Problem (&) separat betrachtet, wobei jeweilen der Laplace-Beltrami-Operator (p = 2) und der p-Laplace- Beltrami-Operator (p '= 2) getrennt diskutiert wird. Der lineare Fall (p = q) erg¨anzt f¨ur n 4 die Arbeit von Bandle und Benguria [4]. Im superlinearen Fall (1 < q < p) wird durch Minimieren eines abgeschnittenen Funktionals eine L¨osung f¨ur (&) gefunden. Mit Hilfe von diesem Minimierer folgt aus dem Mountainpass-Lemma unter geeigneten Voraussetzungen eine zweite L¨osung f¨ur (&). F¨ur den sublinearen Fall (p < q < p") folgt aus dem Kapitel 1 die Existenz eines "" ) R so, dass f¨ur alle " > "" eine L¨osung f¨ur (&) existiert. Es wird daher in dem Kapitel darum gehen, "" genauer zu beschreiben. Mit Hilfe der in Kapitel 3 beschriebenen numerischen Methoden werden im Kapitel 2.9 die von Bandle und Benguria numerisch gefundenen L¨osungen systematisch untersucht. Es stellt sich dabei heraus, dass die L¨osungen eine grosse Struktur aufweisen und unabh¨angig vom kritischen Sobolev-Exponent berechnet werden k¨onnen. Der Existenzbeweis f¨ur diese L¨osungen ist nach wie vor offen. Das Kapitel 3 behandelt die verwendeten numerischen Methoden zum Berechnen von L¨osungen, sowie von L¨osungspfaden des Brezis-Nirenberg- Problems. Da die Dimension n 3ist,konzentrierenwirunsaufrotationssymmetrischeL¨osungeningeod¨atischenKugeln.MitHilfevonSchiessmethodenerhaltenwireinenPunktaufeinemL¨osungspfad,denwirmitderpathcontinuationMethodevonKeller[32]ineinemfiniteElementeRaumfortsetzen.NotationDiezudenSobolevR¨aumenW1,p0(")geh¨origenNormenbezeichnenwirmitpunddieNormenzudenR¨aumenderLebesguemessbarenFunktionenLq(")mitLq.F¨urdenkritischenSobolevExponentverwendenwirdieNotationp"=npnpundmitSp=infu 3 ist, konzentrieren wir uns auf rotationssymmetrische L¨osungen in geod¨atischen Kugeln. Mit Hilfe von Schiessmethoden erhalten wir einen Punkt auf einem L¨osungspfad, den wir mit der “path continuation”-Methode von Keller [32] in einem finite Elemente Raum fortsetzen. Notation Die zu den Sobolev-R¨aumen W1,p 0 (") geh¨origen Normen bezeichnen wir mit * · *p und die Normen zu den R¨aumen der Lebesgue messbaren Funktionen Lq(") mit | · |Lq . F¨ur den kritischen Sobolev-Exponent verwenden wir die Notation p" = np n−p und mit Sp = inf uW1,p 0 |u|Lp! =1 # ! |#u|pdx bezeichnen wir (bis auf die Potenz −1/p) die beste Konstante f¨ur die Sobolev- Einbettung W1,p 0 (") % Lp!("). Es gilt daher # ! |u|p!dx %1/p! + S−1/p p # ! |#u|pdx %1/p . Die Konstante ist gegeben durch (Sp)1/p = (n − p) p − 1 n (p − 1) n − p %1 p & (1 + n − np ) (np ) #(n − 1) (1 + n) '1 n , wobei #(n) = n/2n/2 (n/2 + 1) = 1 n|Sn−1| das Volumen der n dimensionalen Einheitskugel ist. Mit |Sn−1| bezeichnen wir die Oberfl¨ache der n − 1 dimensionalen Sph¨are Sn−1 = ( x ) Rn : |x| = ) x21 + . . . + x2 n = 1 * . Es gilt |Sn−1| = 2n/2n/2 (n/2). Mit Sp,q(", a, c) = inf u$K # ! a|#u|pdx, K = ( u ) W1,p 0 (") : # ! c |u|qdx = 1 * bezeichnen wir (bis auf die Potenz −1/p) die beste Konstante f¨ur die Sobolev- Einbettung W1,p 0 (") % Lq(") mit den Gewichten a ) C1(") mit a(x) > 0 in " und c ) L%(") mit c(x) > 0 in "

    DETERMINACIÓN DE LOS VALORES DE REFERENCIA EN EL HEMOGRAMA DE CABALLOS NACIDOS O CRIADOS ENTRE 0 Y 500 M.S.N.M. EN LA REGIÓN LITORAL DEL ECUADOR

    Get PDF
    El presente trabajo se realizó en la región litoral del Ecuador (provincias de Santo Domingo de los Tsáchilas, Manabí, Los Ríos y Esmeraldas), se analizó los hemogramas de 100 caballos criollos clínicamente sanos, mayores a dos años de edad y criados entre los 0 y 500 m.s.n.m los objetivos fueron determinar los valores hematológicos de referencia y comparar los resultados obtenidos con los valores de un estudio previo realizado a más de 3000 m.s.n.m en la sierra centro norte ecuatoriana. Se obtuvieron muestras sanguíneas de animales en reposo, se realizaron análisis de laboratorio con el equipo de auto-hematología Mindray R BC2800Vet, posteriormente se obtuvieron los valores de referencia utilizando el complemento de Microsoft Excel R “Reference Value Advisor” y la “Prueba Z de la normalidad” para la inferencia estadística. Se prefirió tomar la muestra de caballos criollos ecuatorianos para tener una muestra con parámetros sanguíneos homogéneos y una referencia de esta variedad antes solamente estudiada sobre los 3000 m.s.n.m. Se encontraron los siguientes valores; eritrocitos: 4,90-9,38x106/ L, hematocrito: 24,83-45,10%, hemoglobina: 8,59-14,87g/dL, VCM: 42,35-55,19fL, HCM: 14,25-18,20pg, CHCM: 32,10-36,70g/dL, glóbulos blancos: 5,64-12,81x103/ L, linfocitos: 1,04-5,85x103/ L, monocitos: 0,20-0,90x103/ L, granulocitos: 2,90-8,26x103/ L y plaquetas: 78,10-314,90x103/ L. Al comparar los resultados obtenidos se encontraron diferencias significativas (P<0,05) en el contaje eritrocitos, concentración de hemoglobina, hematocrito y contaje de plaquetas debido a la influencia de la altitud; también se encontró diferencias significativas (P<0,05) en la serie blanca (leucocitos, linfocitos, monocitos y granulocitos) pero esto debido a influencias fisiológicas o patológicas, mas no al efecto altitudinal.// The present study was carried out in the littoral region of Ecuador, analyzing the hemograms of 100 horses clinically healthy, over two years of age and reared between 0 and 500 masl, in order to determinate hematological reference values and compare the results obtained with the reference values of a previous study performed to more than 3000 masl, in the Ecuadorian north central sierra. Therefore, blood samples were taken from animals at rest and were submitted to laboratory analysis with the Mindray R auto-hematology equipment BC2800Vet, and with this information the statistical study was made using Microsoft Excel R “Reference Value Advisor” to identify possible references values and to eliminate outlier data. These blood samples were taken from Ecuadorian creole horses in order to maintain a statistical sample with homogeneous blood parameters and a reference of this variety, which has only been studied before over 3000 masl. The following values were identified: erythrocytes: 4.90-9.38x106/ L, hematocrit: 24.83-45.10%, hemoglobin: 8.59-14,87g/dL, mean corpuscular volume: 42,35-55,19fL, mean corpuscular hemoglobin: 14,25-18.20pg, concentration of mean corpuscular hemoglobin: 32.10-36.70g/dL, white blood cells: 5.64-12.81x103/ L, lymphocytes: 1.04-5.85x103/ L, monocytes: 0.20-0.90x103/ L, granulocytes: 2.90-8.26x103/ L, and blood platelets between: 78.10-314.90x103/ L. In the comparison with the obtained results, significant differences were found (P<0.05) in the erythrocytes, hemoglobin, hematocrit and platelets reference values due to the height influence; while significant differences (P<0.05) were also found in the white series (leukocytes, lymphocytes, monocytes and granulocytes) but this due to physiological or pathological influence and not thanks to the altitudinal effect

    Trace Element Levels in Serum Are Potentially Valuable Diagnostic Markers in Dogs

    Get PDF
    The objective of this study was to obtain information about the role of trace element imbalance in the pathogenesis of certain diseases in dogs and to evaluate the suitability of trace element profiling as an additional tool in the diagnosis. Serum trace element concentrations (copper, molybdenum, selenium and zinc) were measured in a cohort of healthy (control) dogs (n = 42) and dogs affected by hepatic (n = 25), gastrointestinal (n = 24), inflammatory/infection (n = 24), and renal (n = 22) diseases. These data were analyzed together with data on basic biochemical parameters (alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, albumin, globulin, and glucose) by using chemometric techniques. The chemometric analysis revealed distinctive association patterns between trace elements and biochemical parameters for each clinical disorders. The findings provide clear evidence for the important role of trace elements in disease, particularly in relation to acute phase reactions, with serum copper providing an indirect measurement of ceruloplasmin (positive acute-phase protein) and serum selenium and zinc acting as negative acute phase reactants. Molybdenum may also be a suitable marker of incipient renal disease. Thus, the analysis of trace element profiles, by multielement techniques, in a single serum sample would be a valuable additional tool for the diagnosis of certain diseasesS

    Determinação dos valores de referência no hemograma de cavalos nascidos ou criados entre 0 e 500 msnm na região litoral do Equador

    Get PDF
    The present study was carried out in the littoral region of Ecuador, analyzing the hemograms of 100 horses clinically healthy, over two years of age and reared between 0 and 500 masl, in order to determinate hematological reference values and compare the results obtained with the reference values of a previous study performed to more than 3000 masl, in the Ecuadorian north central sierra. Therefore, blood samples were taken from animals at rest and were submitted to laboratory analysis with the Mindray Rauto-hematology equipment BC2800Vet, and with this information the statistical study was made using Microsoft Excel R“Reference Value Advisor” to identify possible references values and to eliminate outlier data. These blood samples were taken from Ecuadorian creole horses in order to maintain a statistical sample with homogeneous blood parameters and a reference of this variety, which has only been studied before over 3000 masl. The following values were identified: erythrocytes: 4.90-9.38x106/uL, hematocrit: 24.83-45.10%, hemoglobin: 8.59-14,87g/dL, mean corpuscular volume: 42,35-55,19fL, mean corpuscular hemoglobin: 14,25-18.20pg, concentration of mean corpuscular hemoglobin: 32.10-36.70g/dL, white blood cells: 5.64-12.81x103/uL, lymphocytes: 1.04-5.85x103/uL, monocytes: 0.20-0.90x103/uL, granulocytes: 2.90-8.26x103/uL, and blood platelets between: 78.10-314.90x103/uL. In the comparison with the obtained results, significant differences were found (P&lt;0.05) in the erythrocytes, hemoglobin, hematocrit and platelets reference values due to the height influence; while significant differences (P&lt;0.05) were also found in the white series (leukocytes, lymphocytes, monocytes and granulocytes) but this due to physiological or pathological influence and not thanks to the altitudinal effect.El presente trabajo se realizó en la región litoral del Ecuador, en donde se analizaron los hemogramas de 100 caballos criollos clínicamente sanos, mayores a dos años de edad y criados entre los 0 y 500 metros sobre el nivel del mar, para cumplir con los objetivos de determinar los valores hematológicos de referencia y comparar los resultados obtenidos con los valores de referencia de un estudio previo, realizado a más de 3000 m.s.n.m en la sierra centro norte ecuatoriana. Se obtuvieron las muestras sanguíneas de animales en reposo, se realizaron los análisis de laboratorio con el equipo de auto-hematología Mindray RBC2800Vet y posteriormente se hizo un análisis estadístico utilizando el complemento de Microsoft Excel R“Reference Value Advisor” para determinar los valores de referencia y eliminar los valores anómalos. Se prefirió tomar la muestra de caballos criollos ecuatorianos para tener una muestra con parámetros sanguíneos homogéneos y una referencia de esta variedad antes solamente estudiada sobre los 3000 m.s.n.m. Se encontraron los siguientes valores; eritrocitos: 4,90-9,38x106/mL, hematocrito: 24,83-45,10%, hemoglobina: 8,59-14,87g/L, VCM: 42,35-55,19fL, HCM: 14,25-18,20pg, CHCM: 32,10-36,70g/L, glóbulos blancos: 5,64-12,81x103/mL, linfocitos: 1,04-5,85x103/mL, monocitos: 0,20-0,90x103/mL, granulocitos: 2,90-8,26x103/mL y plaquetas: 78,10-314,90x103/mL. En la comparación con los resultados obtenidos se encontraron diferencias significativas (P&lt;0,05) en el contaje de eritrocitos, concentración de hemoglobina, hematocrito y contaje de plaquetas debido a la influencia de la altura; también se encontraron diferencias significativas (P&lt;0,05) en la serie blanca (leucocitos, linfocitos, monocitos y granulocitos) pero esto debido a influencias fisiológicas o patológicas, mas no al efecto altitudinal.O presente trabalho foi realizado na região litoral de Equador, onde foram analisados os hemogramas de 100 cavalos clinicamente saudáveis com idade superior a dois anos e criados entre 0 e 500 metros acima do nível do mar, com o intuito de determinar os valores hematológicos e comparar os resultados obtidos com uma pesquisa anteriormente realizada &nbsp;a 3.000 msnm na região centro-norte do Equador. As amostras de sangue foram obtidas de animais em repouso. As análises laboratoriais foram realizadas com a equipe de auto-hematologia Mindray RBC2800Vet e a análise estatística foi realizada usando o Microsoft Excel R "Reference Value Advisor" para determinar os valores da escala e eliminar valores discrepantes. Foi usada &nbsp;amostra de cavalos crioulos do Equador para determinar os parâmetros sanguíneos homogéneos, que tinha apenas um trabalho anterior aos 3000 msnm. Os seguintes valores foram encontrados; eritrócitos 4,90-9,38 x 106 / mL, hematócrito: 24,83-45,10%, hemoglobina: 8,59-14,87 g / L, VCM: 42,35-55,19 fL, HCM: 14,25 -18,20pg, CHCM: 32,10-36,70g / L, leucócitos 5,64-12,81x103 / mL, linfócitos: 1,04-5,85x103 / mL, monócitos: 0,20-0, 90x103 / mL, granulócitos: 2,90-8,26 x 103 / mL e plaquetas: 78,10-314,90 x 103 / mL. Na comparação dos resultados obtidos, foram encontradas diferenças significativas (P &lt;0,05) na contagem de eritrócitos, concentração de hemoglobina, hematócrito e contagem de plaquetas devido a influência de altitude Também foram encontradas diferenças significativas (P &lt;0,05) na série branca (leucócitos, linfócitos, monócitos e granulócitos), mas isso devido as influências fisiológicas ou patológicas e não ao efeito altitude

    Serum Concentrations of Essential Trace and Toxic Elements in Healthy and Disease-Affected Dogs

    Get PDF
    This study was designed (i) to establish reference ranges for the essential trace element and background levels of toxic element exposure in the healthy/normal dog population, and (ii) to evaluate whether trace element concentrations vary in dogs suffering from different pathologies. Blood serum samples were collected from 187 healthy and diseased dogs at the Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Santiago de Compostela (northwest Spain). The samples were acid digested, and the concentrations of trace elements (Co, Cr, Cu, Fe, Mn, Mo, Ni, Se and Zn) and toxic elements (As, Cd, Hg and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS). This enabled us to establish reference ranges for the essential trace elements and the level of toxic element exposure in dogs, and to identify several clinical situations associated with variations in trace elements in serum. Relative to concentrations in healthy control dogs, statistically significant differences were observed in the concentrations of Cu (significantly higher in hepatic, inflammatory/infectious and oncological categories), Mo (significantly higher in renal category), Se (significantly lower in gastrointestinal category) and Zn (significantly lower in gastrointestinal, inflammatory/infectious and renal categories). Trace element concentrations can be a cause or consequence of disease, and the study findings indicate that trace element determination in serum provides useful information on the pathogenesis of certain diseases. Further research on the serum concentrations of trace elements, particularly in relation to other biochemical parameters and diagnostic tools, may provide valuable information for the diagnosis of diseases in dogs and the disease prognosisS
    corecore