5 research outputs found

    Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome.

    Get PDF
    Contains fulltext : 88891.pdf (publisher's version ) (Closed access)Frank-Ter Haar syndrome (FTHS), also known as Ter Haar syndrome, is an autosomal-recessive disorder characterized by skeletal, cardiovascular, and eye abnormalities, such as increased intraocular pressure, prominent eyes, and hypertelorism. We have conducted homozygosity mapping on patients representing 12 FTHS families. A locus on chromosome 5q35.1 was identified for which patients from nine families shared homozygosity. For one family, a homozygous deletion mapped exactly to the smallest region of overlapping homozygosity, which contains a single gene, SH3PXD2B. This gene encodes the TKS4 protein, a phox homology (PX) and Src homology 3 (SH3) domain-containing adaptor protein and Src substrate. This protein was recently shown to be involved in the formation of actin-rich membrane protrusions called podosomes or invadopodia, which coordinate pericellular proteolysis with cell migration. Mice lacking Tks4 also showed pronounced skeletal, eye, and cardiac abnormalities and phenocopied the majority of the defects associated with FTHS. These findings establish a role for TKS4 in FTHS and embryonic development. Mutation analysis revealed five different homozygous mutations in SH3PXD2B in seven FTHS families. No SH3PXD2B mutations were detected in six other FTHS families, demonstrating the genetic heterogeneity of this condition. Interestingly however, dermal fibroblasts from one of the individuals without an SH3PXD2B mutation nevertheless expressed lower levels of the TKS4 protein, suggesting a common mechanism underlying disease causation

    The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe: The Euro Heart Survey on diabetes and the heart

    No full text
    Aim The objective behind the Euro Heart Survey on diabetes and the heart was to study the prevalence of abnormal glucose regulation in adult patients with coronary artery disease (CAD). Methods and results The survey engaged 110 centres in 25 countries recruiting 4196 patients referred to a cardiologist due to CAD out of whom 2107 were admitted on an acute basis and 2854 had an elective consultation. Patient data were collected via a web-based case record form. An oral glucose tolerance test (OGTT) was used for the characterisation of the glucose metabolism. Thirty-one per cent of the patients had diabetes. An OGTT was performed on the 1920 patients without known diabetes, of whom 923 had acute and 997 had a stable manifestation of CAD, respectively. In patients with acute CAD, 36% had impaired glucose regulation and 22% newly detected diabetes. In the stable group these proportions were 37% and 14%. Conclusion This survey demonstrates that normal glucose regulation is less common than abnormal glucose regulation in patients with CAD. OGTT easily discloses the glucometabolic state and should be a routine procedure. The knowledge of glucometabolic state among these patients should influence their future management because it has great potential to improve the outcome
    corecore