50 research outputs found

    From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years.

    Get PDF
    a b s t r a c t The main forest transitions that took place in south-central Chile from the end of the last glaciation to the present are reviewed here with the aim of identifying the main climatic and socio-economic drivers of land cover change. The first great transition, driven primarily by global warming, is the postglacial expansion of forests, with human populations from about 15,000 cal. yr. BP, restricted to coastlines and river basins and localized impact of forest fire. Charcoal evidence of fire increased in south-central Chile and in global records from about 12,000 to 6000 cal. yr. BP, which could be attributed at least partly to people. The subsequent expansion of agriculture led to much clearing of forests and the spread of weeds and other indicators of open habitats. The Spanish colonial period in America may have been followed by a transient expansion of forest cover into abandoned land, as indigenous population declined rapidly due to disease and slaughter. The 18th and 19th centuries brought about extensive loss of forests due to the massive impact of lumber extraction for mining operations both in central Chile and in western North America. Two centuries of intensive deforestation, coupled to grazing by cattle and extremely variable rainfall had long-lasting effects on forest cover in south-central Chile, which persist until today. The transition from a preindustrial to an industrial society brought about the "golden age" of timber harvest, assisted by mobile sawmills and railway transportation since the late 1800s. These advances led to the exhaustion of native commercial timber by the late 20th century in south-central Chile. In North America, harvestable stands were exhausted in New England and the Midwest around 1920. Settlement of the independent territories in the late 1800s and early 1900s implied vast burning and clearing of land and mounting soil erosion. Industrial forestry, based on government-subsidized massive plantations of short-rotation exotic trees, developed in the late 20th century, in connection with postindustrial displacement of exploitative activities from developed to third-world nations. In the last two decades, economic globalization and free trade promoted the expansion of new crops and further decline of woodlands, despite modest increases in forest cover. These patterns are repeated in many Latin American countries. To prevent further depletion of native forest resources and to provide an insurance against climate change, in the 21st century developing nations should aim at: (1) relocating subsidies from fiber farms to restoring diverse forest cover, (2) promoting ecosystem management of diverse forest and crops within landscapes, and (3) fostering diverse cultural relationships between people and their land

    Toward integrated analysis of human impacts on forest biodiversity: lessons from Latin America.

    Get PDF
    Although sustainable forest management (SFM) has been widely adopted as a policy and management goal, high rates of forest loss and degradation are still occurring in many areas. Human activities such as logging, livestock husbandry, crop cultivation, infrastructural development, and use of fire are causing widespread loss of biodiversity, restricting progress toward SFM. In such situations, there is an urgent need for tools that can provide an integrated assessment of human impacts on forest biodiversity and that can support decision making related to forest use. This paper summarizes the experience gained by an international collaborative research effort spanning more than a decade, focusing on the tropical montane forests of Mexico and the temperate rain forests of southern South America, both of which are global conservation priorities. The lessons learned from this research are identified, specifically in relation to developing an integrated modeling framework for achieving SFM. Experience has highlighted a number of challenges that need to be overcome in such areas, including the lack of information regarding ecological processes and species characteristics and a lack of forest inventory data, which hinders model parameterization. Quantitative models are poorly developed for some ecological phenomena, such as edge effects and genetic diversity, limiting model integration. Establishment of participatory approaches to forest management is difficult, as a supportive institutional and policy environment is often lacking. However, experience to date suggests that the modeling toolkit approach suggested by Sturvetant et al. (2008) could be of value in such areas. Suggestions are made regarding desirable elements of such a toolkit to support participatory-research approaches in domains characterized by high uncertainty, including Bayesian Belief Networks, spatial multi-criteria analysis, and scenario planning.Most of the research described here was undertaken in three projects supported by the European Commission (INCO programme), namely SUCRE (ERBIC18CT970146), BIOCORES (ICA4- CT-2001-10095), and ReForLan (INCO-DEV-3 N° 032132), and three Darwin Initiative (DEFRA, UK Government) grants to the senior author. Additional funding was provided by a variety of sources within the partner countries. All sources of financial support are gratefully acknowledged

    Toward integrated analysis of human impacts on forest biodiversity: lessons from Latin America.

    Get PDF
    Although sustainable forest management (SFM) has been widely adopted as a policy and management goal, high rates of forest loss and degradation are still occurring in many areas. Human activities such as logging, livestock husbandry, crop cultivation, infrastructural development, and use of fire are causing widespread loss of biodiversity, restricting progress toward SFM. In such situations, there is an urgent need for tools that can provide an integrated assessment of human impacts on forest biodiversity and that can support decision making related to forest use. This paper summarizes the experience gained by an international collaborative research effort spanning more than a decade, focusing on the tropical montane forests of Mexico and the temperate rain forests of southern South America, both of which are global conservation priorities. The lessons learned from this research are identified, specifically in relation to developing an integrated modeling framework for achieving SFM. Experience has highlighted a number of challenges that need to be overcome in such areas, including the lack of information regarding ecological processes and species characteristics and a lack of forest inventory data, which hinders model parameterization. Quantitative models are poorly developed for some ecological phenomena, such as edge effects and genetic diversity, limiting model integration. Establishment of participatory approaches to forest management is difficult, as a supportive institutional and policy environment is often lacking. However, experience to date suggests that the modeling toolkit approach suggested by Sturvetant et al. (2008) could be of value in such areas. Suggestions are made regarding desirable elements of such a toolkit to support participatory-research approaches in domains characterized by high uncertainty, including Bayesian Belief Networks, spatial multi-criteria analysis, and scenario planning.Most of the research described here was undertaken in three projects supported by the European Commission (INCO programme), namely SUCRE (ERBIC18CT970146), BIOCORES (ICA4- CT-2001-10095), and ReForLan (INCO-DEV-3 N° 032132), and three Darwin Initiative (DEFRA, UK Government) grants to the senior author. Additional funding was provided by a variety of sources within the partner countries. All sources of financial support are gratefully acknowledged

    Senda Darwin Biological Station: Long-term ecological research at the interface between science and society

    Get PDF
    Indexación: Web of Science; Scielo.La Estación Biológica Senda Darwin (EBSD) constituye un centro de investigación inmerso en el paisaje rural del norte de la Isla de Chiloé (42º S), donde fragmentos del bosque siempreverde original coexisten con praderas de uso ganadero, turberas de Sphagnum, matorrales sucesionales, plantaciones de Eucalyptus y otras formaciones de origen antropogénico. Desde 1994 hemos realizado estudios de largo plazo centrados en algunas especies de plantas (e.g., Pilgerodendron uviferum D. Don) y animales (e.g., Aphrastura spinicauda Gmelin, Dromiciops gliroides [Thomas]) catalogados como amenazados o escasamente conocidos y en ecosistemas nativos de importancia regional y global (e.g., turberas de Sphagnum, bosque Valdiviano y Nordpatagónico). Las investigaciones han considerado las respuestas de las especies y de los ecosistemas frente al cambio antropogénico del paisaje y cambio climático, así como los efectos de diferentes formas de manejo. Este escenario es semejante al de otras regiones de Chile y Latinoamérica lo que da generalidad a nuestros resultados y modelos. En este período, investigadores asociados a la EBSD han producido más de un centenar de publicaciones en revistas nacionales e internacionales y 30 tesis de pre y postgrado. Entendiendo el papel clave de los seres humanos en los procesos ecológicos de la zona rural, la EBSD ha desarrollado un programa de educación ecológica y vinculación del avance científico con la sociedad local y nacional. La integración de la EBSD a la naciente red de Sitios de Estudios Socio-Ecológicos de Largo Plazo en Chile consolidará y fortalecerá la investigación básica y aplicada que realizamos para proyectarla hacia la siguiente década.Senda Darwin Biological Station (SDBS) is a field research center immersed in the rural landscape of northern Chiloé island (42º S), where remnant patches of the original evergreen forests coexist with open pastures, secondary successional shrublands, Sphagnum bogs, Eucalyptus plantations and other anthropogenic cover types, constituting an agricultural frontier similar to other regions in Chile and Latin America. Since 1994, we have conducted long-term research on selected species of plants (e.g., Pilgerodendron uviferum) and animals (e.g., Aphrastura spinicauda, Dromiciops glirioides) that are considered threatened, poorly known or important for their ecological functions in local ecosystems, and on ecosystems of regional and global relevance (e.g., Sphagnum bogs, North Patagonian and Valdivian rain forests). Research has assessed the responses of species and ecosystems to anthropogenic land-use change, climate change, and the impact of management. During this period, more than 100 scientific publications in national and international journals, and 30 theses (graduate and undergraduate) have been produced by scientists and students associated with SDBS. Because of our understanding of the key role that humans play in ecological processes at this agricultural frontier, since the establishment of SDBS we have been committed to creative research on the communication of science to society and ecological education. The integration of SDBS to the nascent Chilean network of long-term socio-ecological research will consolidate and strengthen basic and applied research to project our work into the next decade.http://ref.scielo.org/vbm4r

    Foraging behaviour of bird pollinators on Embothrium coccineum (Proteaceae) trees in forest fragments and pastures in southern Chile

    No full text
    We investigated the effects of forest patch size on the behaviour of birds feeding on the fower nectar of the proteaceous tree Embothrium coccineum J. R. et G. Forster, which is typically restricted to forest edges in agricultural landscapes in southern Chile. We quantified reproductive parameters of trees (no. inflorescences per branch, total and open flowers per inflorescence) in forest fragments varying from 1 ha (small), to 20 ha (medium) and to >150 ha (large), and in remnant trees in pastures. Visits to flowers by nectar-feeding birds were recorded during 30-min observation periods, spread throughout the day during two flowering seasons, November 1992 and 1993 (n = 242 periods overall). Aggressive encounters among flower visitors were recorded in 1992. We expected less visits to trees in pastures and small forest patches because abundances of Embothrium's main pollinators, the flycatcher Elaenia albiceps and the hummingbird Sephanoides sephaniodes, decreased in smaller patches.

    Nitrogen mineralization in two unpolluted old-growth forests of contrasting biodiversity and dynamics

    No full text
    Studies in unpolluted, old-growth forests in the coastal range of southern Chile (42°30′S) can provide a baseline for understanding how forest ecosystems are changing due to the acceleration of nitrogen (N) inputs that has taken place over the last century. Chilean temperate forests, in contrast to their northern hemisphere counterparts, exhibit extremely low losses of inorganic N to stream waters. The objectives of this study were (a) to determine whether low inorganic N outputs in these forests were due to low rates of N mineralization or nitrification, and (b) to examine how biodiversity (defined as number of dominant tree species) and forest structure influence N mineralization and overall patterns of N cycling. Studies were conducted in a species-poor, conifer-dominated (Fitzroya cupressoides) forest with an even-aged canopy, and in a mixed-angiosperm (Nothofagus nitida) forest with a floristically more diverse and unstable canopy. Nitrogen mineralization rates measured in labora
    corecore