5 research outputs found

    Neural activity patterns in the chemosensory network encoding vomeronasal and olfactory information in mice

    Get PDF
    Rodents detect chemical information mainly through the olfactory and vomeronasal systems, which play complementary roles to orchestrate appropriate behavioral responses. To characterize the integration of chemosensory information, we have performed electrophysiological and c-Fos studies of the bulbo–amygdalar network in freely behaving female mice exploring neutral or conspecific stimuli. We hypothesize that processing conspecifics stimuli requires both chemosensory systems, and thus our results will show shared patterns of activity in olfactory and vomeronasal structures. Were the hypothesis not true, the activity of the vomeronasal structures would be independent of that of the main olfactory system. In the c-Fos analysis, we assessed the activation elicited by neutral olfactory or male stimuli in a broader network. Male urine induced a significantly higher activity in the vomeronasal system compared to that induced by a neutral odorant. Concerning the olfactory system, only the cortex–amygdala transition area showed significant activation. No differential c-Fos expression was found in the reward system and the basolateral amygdala. These functional patterns in the chemosensory circuitry reveal a strong top-down control of the amygdala over both olfactory bulbs, suggesting an active role of the amygdala in the integration of chemosensory information directing the activity of the bulbs during environmental exploration

    Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse

    Get PDF
    The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic ‘aggression area’, suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli

    Automação da correção da primeira velocidade em medidas eletrônicas de distância com base em rede de observação de parâmetros ambientais multi-estações

    Get PDF
    Orientador: Prof. Dr. Luís Augusto Koenig VeigaCoorientador: Prof. Dr. Wilson de Alcântara SoaresDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências da Terra, Programa de Pós-Graduação em Ciências Geodésicas. Defesa : Curitiba, 17/12/2018Inclui referências: p.142-148Resumo: O uso de medidores eletrônicos de distânica (MED) é uma técnica empregada em estações totais para a determinação de distancias entre estas e uma superfície refletora. Esta técnica baseia-se na propagação de ondas eletromagnéticas, a qual, através do conhecimento da velocidade de propagação e o tempo gasto em se deslocar no sistema emissor-refletor e viceversa, permite obter a distância entre eles. A velocidade de propagação da onda depende do estado do meio de propagação, sendo que a densidade deste varia em função do comportamento dos parâmetros ambientais de pressão, umidade e temperatura, sendo esta última a que gera maior incerteza. A variação da velocidade é determinada através do cálculo do índice de refração, e sua quantificação em metros é obtida a partir da primeira correção de velocidade. Ambos os parâmetros são calculados de forma automática mediante inserção dos parâmetros de pressão, temperatura e umidade a serem aplicados no instante da observação de distância. Nesta pesquisa foi desenvolvida e automatizada uma rede de sensores de temperatura com objetivo de avaliar e considerar as variações deste parâmetro e sua incidência na determinação de distâncias no contexto do monitoramento geodésico de barragens. O sistema foi projetado e programado para que as observações de distâncias e medições de temperatura fossem realizadas simultaneamente. Portanto, foi possível determinar em tempo real as variações de temperatura, e verificar como estas afetam às distâncias. Os resultados mostraram a funcionalidade do método proposto, confirmando a necessidade de medir valores de temperatura durante a observação de redes de controle, bem como no decurso de coleta de pontos de monitoramento, já que em diferentes locações a temperatura apresentou variações em torno de 5 graus. Palavras chaves: Distanciómetros eletrônicos. Refração. Primeira correção de Velocidade. Automação. Temperatura.Abstract: The electronic distance meters is a technique used in total stations to determine the distances between this and a reflecting surface. This technique is based on the propagation of electromagnetic waves, which, through the knowledge of the propagation velocity and the time spent in moving from the system transmitter-receiver and vice versa, allows obtaining the distance between them. The wave propagation velocity depends on the conditions of the propagation medium which, its density varies according to the behavior of the environmental parameters such as pressure, humidity and temperature. The last one generates very significant uncertainties. The velocity variation is determined through the refraction index calculation, and its quantification in meters obtained from the first velocity correction. Both parameters are calculated automatically by inserting pressure, temperature and humidity parameters to be applied in the instant of distance observation. In this research, a temperature sensors network was developed and automated with the aim to evaluate and take into account the variations of this parameter and its incidence in the determination of distances in the context of dams geodetic monitoring. The system was designed and programmed for simultaneous distances observations and temperature measurements. Therefore, it was possible to determine in real time the temperature variations, and to verify how they affect the distances. The results showed the functionality of the developed system, confirming the need to measure temperature values during the observation of control networks, as well as while the collection of monitoring points, since at different locations the temperature showed variations around 5 degrees. Key- words: Electronic meters. Refraction. First correction of Velocity. Automation. Temperature
    corecore