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ABSTRACT (max. 250 words) 

The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical 

amygdala that receives afferent projections from both the main and accessory olfactory 

bulbs.  The role of this structure is unknown, partially due to a lack of knowledge of its 

connectivity. In this work, we describe the pattern of afferent and efferent projections of 

the ACo by using fluorogold and biotinylated dextranamines as retrograde and 

anterograde tracers, respectively. The results show that the ACo is reciprocally 

connected with the olfactory system and basal forebrain, as well as with the 

chemosensory and basomedial amygdala. In addition, it receives dense projections from 

the midline and posterior intralaminar thalamus, and moderate projections from the 

posterior bed nucleus of the stria terminalis, mesocortical structures and the 

hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei 

of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the 

lateral hypothalamus. Finally, minor connections are present with some midbrain and 

brainstem structures. 

The afferent projections of the ACo indicate that this nucleus might play a role in 

emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. 

The efferent projections confirm this view and, given its direct output to the medial part 

of the central amygdala and the hypothalamic ‘aggression area’, suggest that the ACo 

can initiate defensive and aggressive responses elicited by olfactory or, to a lesser 

extent, vomeronasal stimuli. 
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ABBREVIATIONS 

I layer 1 
II layer 2 
2Cb 2nd Cerebellar lobule 
III layer 3 
3V 3rd ventricle 
4V 4th ventricle 
AAD anterior amygdaloid area, dorsal part 
AAV anterior amygdaloid area, ventral part 
AC anterior commissural nucleus 
aca anterior commissure, anterior part 
ACb nucleus accumbens 
AcbC accumbens nucleus, core 
AcbSh accumbens nucleus, shell 
ACo anterior cortical amygdaloid nucleus 
acp anterior commissure, posterior part 
ADP anterodorsal preoptic nucleus 
AH anterior hypothalamic area 
AHA anterior hypothalamic area, anterior part 
AHi amygdalohippocampal area 
AHP anterior hypothalamic area, posterior part 
AI agranular insular cortex 
AID agranular insular cortex, dorsal part 
AIP agranular insular cortex, posterior part 
AIV agranular insular cortex, ventral part 
AOB accessory olfactory bulb 
AOL anterior olfactory nucleus, lateral part 
AOM anterior olfactory nucleus, medial part 
AON anterior olfactory nucleus 
AOP anterior olfactory nucleus, posterior part 
APir amygdalopiriform transition area 
Aq aqueduct 
Arc arcuate nucleus 
Astr amygdalostriatal transition area 
BAOT bed nucleus of the accessory olfactory 
BLA basolateral amygdaloid nucleus, anterior part 
BLP basolateral amygdaloid nucleus, posterior part 
BLV basolateral amygdaloid nucleus, ventral part 
BMA basomedial amygdaloid nucleus, anterior part 
BMP basomedial amygdaloid nucleus, posterior part 
BST bed nucleus of the stria terminalis 
BSTIA BST, intraamygdaloid division 
BSTLD BST, lateral division, dorsal part 
BSTLP BST, lateral division, posterior part 
BSTLV BST, lateral division, ventral part 
BSTMA BST, medial division, anterior part 
BSTMPI BST, medial division, posterointermediate part 
BSTMPL  BST, medial division, posterolateral part 
BSTMPM  BST, medial division, posteromedial part 
BSTMV BST, medial division, ventral part 
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CA1 field CA1 of hippocampus 
CA3 field CA3 of hippocampus 
Ce central amygdaloid nucleus 
CeC central amygdaloid nucleus, capsular part 
CeL central amygdaloid nucleus, lateral division  
CeM central amygdaloid nucleus, medial division 
Cl claustrum 
CM central medial thalamic nucleus 
cp cerebral peduncle 
CPu caudate putamen 
CxA cortex-amygdala transition zone 
D3V dorsal 3rd ventricle 
DEn dorsal endopiriform nucleus 
DG dentate gyrus 
dlo dorsal lateral olfactory tract 
DM dorsomedial hypothalamic nucleus 
DP dorsal peduncular cortex 
DPMe deep mesencephalic nucleus 
DR dorsal raphe nucleus 
DTT dorsal tenia tecta 
E/OV ependymal and subependymal layer/olfactory ventricle 
ec external capsule 
eml external medullary lamina 
Ect ectorhinal cortex 
EPl external plexiform layer of the main olfactory bulb 
EPlA external plexiform layer of the accessory olfactory bulb 
f fornix 
fr fasciculus retroflexus 

Gl glomerular layer of the main olfactory bulb 
GlA glomerular layer of the AOB 
GrA granule cell layer of the AOB 
GrO granular cell layer of the main olfactory bulb 
HDB nucleus of the horizontal limb of the diagonal band 
I intercalated nuclei of the amygdala 
ic internal capsule 
IF interfascicular nucleus 
IL infralimbic cortex 
IM intercalated amygdaloid nucleus, main part 
IMD intermediodorsal thalamic nucleus 
IP interpeduncular nucleus 
IPAC interstitial nucleus of the posterior limb of the anterior commissure 
IPl internal plexiform layer of the main olfactory bulb 
LA lateroanterior hypothalamic nucleus 
La lateral amygdaloid nucleus 
LaDL lateral amygdaloid nucleus, dorsolateral part 
LaVL lateral amygdaloid nucleus, ventrolateral part 
LaVM lateral amygdaloid nucleus, ventromedial part 
LC locus coeruleus 

LDTg laterodorsal tegmental nucleus 
LEnt lateral entorhinal cortex 
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LGP lateral globus pallidus 
LH lateral hypothalamic area 
LHb lateral habenula 
LMol lacunosum molculare layer 
LPAG lateral periaqueductal gray 
LPB lateral parabrachial nucleus 
LPO lateral preoptic area 
LO lateral orbital cortex 
lo  lateral olfactory tract 
LOT nucleus of the lateral olfactory tract 
LSD lateral septal nucleus, dorsal part 
LSI lateral septal nucleus, intermediate part 
LSV lateral septal nucleus, ventral part 
LV lateral ventricle 
MCLH magnocellular nucleus of the lateral hypothalamus 
MCPO magnocellular preoptic nucleus 
MD mediodorsal thalamic nucleus 
Me medial amygdaloid nucleus 
MeA medial amygdaloid nucleus, anterior subnucleus 
me5 mesencephalic trigeminal tract 
MeAD medial amygdaloid nucleus, anterodorsal part 
MeAV medial amygdaloid nucleus, anteroventral part 
MePD medial amygdaloid nucleus, posterodorsal subnucleus 
MePV medial amygdaloid nucleus, posteroventral subnucleus 
MGD medial geniculate nucleus, dorsal part 
MGM medial geniculate nucleus, medial part 
MGV medial geniculate nucleus, ventral part 
Mi mitral cell layer of the main olfactory bulb 
MiA mitral cell layer of the AOB 
ml medial lemniscus 
mlf medial longitudinal fasciculus 
MnPO median preoptic nucleus 
MO medial orbital cortex 
MOB main olfactory bulb 
MPA medial preoptic area 
MPB medial parabrachial nucleus 
MPO medial preoptic nucleus 
MS medial septal nucleus 
mt mamillothalamic tract 
mtg mamillotegmental tract 
Mtu medial tuberal nucleus 
ns nigrostriatal bundle 
opt optic tract 
Pa paraventricular hypothalamic nucleus 
PAG periaqueductal gray 
PB parabrachial nucleus 
pc posterior commissure 
Pe periventricular hypothalamic nucleus 
PF parafascicular thalamic nucleus 
PH posterior hypothalamic area 

Page 6 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



 

 

7 

 

PIL posterior intralaminar thalamic nucleus 
Pir piriform cortex 
PLCo  posterolateral cortical amygdaloid nucleus 
PMCo posteromedial cortical amygdaloid nucleus 
PMD premamillary nucleus, dorsal part 
PMV premamillary nucleus, ventral part 
PMnR paramedian part of the raphe nucleus 
PN paranigral nucleus 
PnC pontine reticular nucleus, caudal part 
PnO pontine reticular nucleus, oral part 
PoT triangular part of the posterior thalamic nucleus  
PP peripeduncular nucleus 
PPTg pedunculopontine tegmental nucleus 
PRh perirhinal cortex 
PrL  prelimbic cortex 
PS parastrial nucleus 
PSTh parasubthalamic nucleus 

PT paratenial thalamic nucleus 
pv periventricular fiber system 
PV paraventricular thalamic nucleus 
PVA paraventricular thalamic nucleus, anterior part 
PVP paraventricular thalamic nucleus, posterior part 
Py pyramidal cell layer of the hippocampus 
py pyramidal tract 
Rad stratum radiatum of hippocampus 
RCh retrochiasmatic area 
Re reuniens thalamic nucleus 
Rh rhomboid thalamic nucleus 
RLi rostral linear nucleus of the raphe 
RMC red nucleus, magnocellular part 
RPC red nucleus, parvicellular part  
S subiculum 
SCh suprachiasmatic nucleus 
scp superior cerebellar peduncle 
SG suprageniculate thalamic nucleus 
SHi septohippocampal nucleus 
SHy septohypothalamic nucleus 
SI substantia innominata 

SL semilunar nucleus 
sm  stria medullaris  

SM nucleus of the stria medullaris 
SNC substantia nigra, compact part 
SNR  substantia nigra, reticular part 
sp5 spinal trigeminal tract 
SPF subparafascicular thalamic nucleus 
SPFPC subparafascicular thalamic nucleus, parvicellular part 
st stria terminalis 

SuM supramamillary nucleus 
Subl subincertal nucleus 
STh subthalamic nucleus 

Page 7 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



 

 

8 

 

TC tuber cinereum area 
Te terete hiphotalamic nucleus  
Tu olfactory tubercle 
unc uncinate fasciculus 

VDB nucleus of the vertical limb of the diagonal band 
VEn ventral endopiriform nucleus 
VMH ventromedial hypothalamic nucleus 
VP ventral pallidum 
VTA ventral tegmental area 
VTM ventral tuberomamillary nucleus 
VTT ventral tenia tecta 
ZI zona incerta 
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INTRODUCTION 

The discovery of the critical role of the basolateral and central amygdaloid nuclei in fear 

learning has led to an extensive research focused on these areas (Janak and Tye, 2015), 

while the chemosensory structures of the amygdala have received much less attention. 

However, the chemosensory areas of the amygdaloid complex are important for 

controlling social, sexual and maternal behaviors in rodents (Swann et al., 2009). These 

areas may also play a relevant role in emotional learning, as shown in the case of 

olfactory fear conditioning, in which a previously neutral odor becomes aversive by its 

association to a footshock (Cousen and Otto, 1998; Sevelinges et al., 2004). Among the 

amygdaloid structures involved in chemosensory-mediated emotional behavior, the 

medial amygdaloid nucleus (Me) has been by far the most studied, since lesions of this 

nucleus abolish the chemosensory control of sexual behaviors (Lehman et al., 1980). 

However, the Me is (mainly) a subcortical structure (Swanson and Petrovich, 1998) 

with a heterogeneous embryological origin (Bupesh et al., 2011). Therefore, the Me is 

probably an output station, controlled by its cortical inputs. One of its relevant cortical 

inputs originates in its neighbor structure, the anterior cortical nucleus of the amygdala 

(ACo) (Cádiz-Moretti et al., 2016a). Recent electrophysiological studies have revealed 

that the ACo provides an olfactory input to the Me which synapses into vomeronasally-

driven Me neurons, allowing the integration of olfactory and vomeronasal information 

at the single cell level (Keshavarzi et al., 2015; see Guthman and Vera, 2016). In 

addition, the ACo (as the Me), receives direct projections arising from the main and 

accessory olfactory bulbs (Scalia and Winans, 1975; Pro-Sistiaga et al., 2007; Kang et 

al., 2009; Cádiz-Moretti et al., 2013). These convergent projections may allow olfactory 

and vomeronasal information to be integrated in this structure. The ACo has also been 

suggested, based on electrophysiological data, to play a role in olfactory fear 

conditioning (Sevelinges et al., 2004). Therefore, this cortical amygdaloid structure 

seems to be an associative nucleus involved in olfactory learning processes (either 

olfactory-vomeronasal associations or olfactory fear learning). However, the 

connectivity of ACo that may underlie these associative processes, and in turn influence 

behavioral responses, is unknown.  

To our knowledge, a comprehensive study of the connectivity of the ACo has not been 

performed in mice. Partial information on its afferent connections is derived mainly 

from early studies based on injections of retrograde tracers in the amygdala of rats 
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(Veening, 1978a, 1978b; Ottersen and Ben-Ari, 1979; Ottersen, 1980; Ottersen, 1982), 

as well as descriptions of the efferent projections of some structures that project to the 

ACo (mainly in rats, see McDonald, 1998, for cortical projections, and Pitkänen, 2000, 

for intraamygdaloid connections). With regard to the efferent projections, data are 

available for rats (Luskin and Price, 1983; Petrovich et al., 1996), cats (Krettek and 

Price, 1977) and hamsters (Kevetter and Winans, 1981). In contrast to the lack of 

anatomical studies in mice, functional data in female mice have shown that the ACo 

exhibits Fos immunoreactive cells induced by exposure to male urinary odors (Moncho-

Bogani et al., 2005; Martel and Baum, 2009; Brock et al., 2012). Moreover, 

Majkutewicz et al. (2010) showed in rats that the ACo, in addition with other 

mesolimbic structures, displayed increased Fos expression after electrical stimulation of 

the ventral tegmental area. These authors suggested that the ACo might play a role in 

ingestive and exploratory behaviors due to its role in processing the reinforcing 

properties of olfactory stimuli.  

This work is part of a long-term project aiming to provide a complete description of the 

connectivity of the chemosensory amygdala in mice. We have previously reported the 

connections of the Me (Pardo-Bellver et al., 2012; Cádiz-Moretti et al., 2016a), the 

posteromedial cortical nucleus of the amygdala (Gutiérrez-Castellanos et al., 2014) and 

the cortex-amygdala transition zone (Cádiz-Moretti et al., 2016b), as well as the 

connection of the chemosensory amygdaloid structures with the ventral striatum 

(Úbeda-Bañón et al., 2007; 2008; Novejarque et al., 2011). The aim of this work is to 

provide a comprehensive description of the afferent and efferent connections of the 

ACo in mice, which is currently lacking. With this description, we want to highlight the 

possible importance of this structure in the processing of convergent vomeronasal and 

olfactory information, as well as to clarify other inputs and outputs relevant to the 

processing of chemosensory information in this cortical amygdaloid area.  

MATERIAL AND METHODS 

Animals 

For the present study, we used 15 adult female mice (Mus musculus) from the CD1 

strain (Janvier, Le Genest Saint-Isle, France), which were 9-27 weeks old and weighed 

27.8-51.1 g at the beginning of the experiments. They were kept in cages with food and 

water ad libitum in a 12 h light:dark cycle at 22-24 °C. We treated the mice according to 
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the guidelines of the European Union Council Directive of June 3rd, 2010 (6106/1/10 

REV1). The Committee of Ethics on Animal Experimentation of the University of 

Valencia approved all the experimental procedures. 

Surgery and tracer injections 

For surgery, animals were anesthetized with isoflurane (2-2.5%) in oxygen (1-1.3 

L/min) (MSS Isoflurane Vaporizer, Medical Supplies and Services, UK) delivered 

through a mouse anesthetic mask attached to the stereotaxic apparatus (David Kopf, 

963-A, Tujunga CA, USA). Analgesia was provided by subcutaneous butorphanol (5 

mg/kg, Turbugesic, Pfizer, New York, USA). While the head was fixed in the 

stereotaxic, mice rested on a thermal blanket to keep their body temperature, and eye 

drops (Siccafluid, Thea S.A. Laboratories, Spain) were used to prevent eye ulceration. 

Tract-tracing experiments were performed by means of iontophoretic injections of the 

fluorescent retrograde tracer Fluoro-Gold (FG, hydroxystilbamidine bis 

(methanesulfonate), Sigma-Aldrich, Cat # 39286) diluted at 2% in distilled water, and 

the anterograde tracer biotin-conjugated dextranamine (BDA, 10,000 MW, lysine 

fixable, Invitrogen, Carlsbad, CA, USA), diluted at 5% in phosphate buffer (PB) 0.01M, 

pH 8.0. To reduce the number of animals, FG was injected in one hemisphere and BDA 

in the other. Tracer injections were performed with glass micropipettes (20-30 µm 

diameter tips) by means of positive current pulses (7on/7off) of 2-3 µA over the course 

of 3-6 minutes, and the micropipette was left in place for 10 minutes after finishing the 

injection. To avoid diffusion of the tracer along the pipette track, a continuous retention 

current (-0.1 µA) was applied during the entrance and withdrawal of the micropipette. 

Stereotaxic coordinates relative to Bregma were taken from the atlas of the mouse brain 

(Paxinos and Franklin, 2004), and applied, using a flat skull approach,  as follows: AP -

0.8 to – 1.5 mm, L - 2.55 to -2.8 mm and DV -5.97 to -6.02 mm. After the injection, we 

closed the wound with Histoacryl (Braun, Tuttlinger, Germany).  

Histology 

After 7-8 days of survival, we deeply anaesthetized the animals with an intraperitoneal 

injection of sodium pentobarbital (100mg/kg, Eutanax, Laboratorios Normon S.A. 

Madrid, Spain) and perfused them transcardially with saline solution (0.9%) followed 

by 4% paraformaldehyde (diluted in PB 0.1M, pH 7.6). Following perfusions, brains 
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were removed from the skulls, postfixed for 4 hours in the same fixative and 

cryoprotected in 30% sucrose in PB (0.1M, pH 7.6) at 4°C until they sank. We used a 

freezing microtome to obtain sagittal sections (30 µm) through the olfactory bulbs and 

frontal sections (40 µm) through the rest of the brain. In both cases, sections were 

collected in four parallel series. 

After checking the location and extent of the FG injection deposits using fluorescence 

microscopy, we processed one of the series of each brain for the simultaneous detection 

of BDA and FG in free-floating sections. For the histochemical detection of the BDA, 

endogenous peroxidase was inactivated with 1% H2O2 in Tris-buffered saline (TBS; 

0.05 M, pH 7.6) for 15 min at room temperature and then sections were incubated for 90 

min in ABC complex (Vectastain ABC kit, Vector Labs, PK-6100, Burlingame, CA, 

USA) diluted 1:50 in TBS-Tx (0.3% Triton X-100 in 0.05 M TBS, pH 7.6). After 

rinsing the sections thoroughly with TBS, peroxidase activity was visualized with 

0.025% diaminobenzidine in TB (0.1 M, pH 8.0) as chromogen, 0.01% H2O2 as 

substrate, and 0.1% nickel ammonium sulfate as enhancer, yielding a black precipitate 

as reaction product. Subsequently, FG was immunohistochemically detected in the same 

sections. To do so, sections were incubated in a blocking solution of TBS-Tx containing 

8% normal goat serum (NGS) and 4% bovine serum albumin (BSA) for 2 hours at room 

temperature. Then, sections were sequentially incubated in (Table 1): rabbit anti-FG 

(Millipore, Cat # AB153, RRID: AB_90738) diluted 1:3000 in TBS-Tx with 4% NGS 

and 2% BSA overnight at 4°C; biotinylated goat anti-rabbit IgG (Vector, Cat # BA-

1000) diluted 1:200 in TBS-Tx with 4% NGS for 2 hours at room temperature; and 

ABC Elite diluted 1:50 in TBS-Tx for 2 hours at room temperature. Finally, the 

resulting peroxidase labeling was revealed with 0.025% diaminobenzidine in TB (0.1M, 

pH 8.0) with 0.01% H2O2. The resulting precipitate was a brown product, easily 

distinguishable from the black precipitate resulting from the histochemical detection of 

BDA. For some of the animals, an additional series was processed only for the detection 

of BDA and counterstained with Nissl. 

The specificity of the anti-FG antibody has been previously characterized, and this 

antibody has been extensively used in our laboratory (e.g. Gutiérrez- Castellanos et al., 

2014; Cádiz-Moretti et al., 2016a, 2016b). The omission of the primary antibody or 
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performing the immunohistochemical procedure in animals with no FG injection 

yielded no labeling. 

In addition, to determine the boundaries, extent and cytoarchitectonic organization of 

the ACo, we brain sections stained with Nissl and acetyl cholinesterase (AchE) 

histochemistry available at the laboratory. AchE histochemistry was perfomed 

according to Geneser-Jensen and Blackstad (1971). Briefly, sections were incubated in a 

medium containing 4mM acetyltiocholine, 2mM CuSO4, 10mM glycine and 0.2mM 

ethopropazide in 50mM acetate buffer (pH 5.5) for 2-3 h at 37ºC. After rinsing, AchE 

activity was visualized during 1 min of incubation in 10% potassium ferricyanide.  

Sections were mounted onto gelatinized slides, dehydrated in alcohols, cleared with 

xylene and cover-slipped with Entellan (Merck Millipore).  

Image acquisition and processing 

We observed the sections using an Olympus CX41RF-5 microscope and photographed 

them using a digital Olympus XC50 camera. Fluorescent images of the FG injection 

sites were observed with a Leitz DMRB microscope with epifluorescence (Leica EL-

6000) equipped with a specific filter for FG (Leica, A) and imaged using a digital Leica 

DFC 300 FX camera. Using Adobe Photoshop 7.0 (Adobe Systems, MountainView, 

CA, USA) pictures were flattened by subtracting background illumination and 

brightness and contrast were optimized. No further changes were performed. Finally, 

illustrations were designed with Adobe Photoshop 7.0 and Illustrator. 

The distribution of labeled structures after the tracer injections was mapped using one of 

the restricted FG and BDA injections as a model. To do so, selected microscopic images 

were imported into Adobe Illustrator CS6 (Adobe Systems) and the limits of the brain 

areas were drawn using as a reference the atlas by Paxinos and Franklin (2004). 

Anterograde and retrograde labeling were charted representing, in a roughly 

proportional manner, the density of fibers and terminals or neuronal somata, 

respectively. The labeling density was considered as very dense, dense, moderate, 

scarce, and very scarce (see Table 2). As a reference (see Fig. 1), we considered very 

dense the retrograde labeling in the mitral cell layer of the main olfactory bulb, and very 

scarce the presence of only 2–5 labeled cell bodies. In the case of anterograde labeling, 

we considered very dense the labeling observed in the posterolateral cortical 
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amygdaloid nucleus, and very scarce the presence of only 2–5 labeled fibers. The 

density of labeling was rated in each of the restricted injections (three of FG and four of 

BDA) by one researcher, and confirmed independently by two other researchers, 

specially focusing in the structures in which the different experimental cases have 

yielded more variability. 

 

RESULTS 

We first describe the architecture and chemoarchitecture of the ACo, which are helpful 

to delineate the location and extent of the tracer injections. Then we report the 

distribution and relative density of retrogradely labeled cells observed after FG 

injections, and the pattern of anterograde labeling resulting after the BDA experiments. 

For the description of the retrograde and anterograde labeling, we follow the 

cytoarchitecture and nomenclature of the atlas of Paxinos and Franklin (2004).  

Cytoarchitecture and chemoarchitecture of the ACo 

The ACo is characteristically negative for AchE activity, with clear boundaries with the 

laterally adjacent cortex-amygdala transition area (CxA), which is moderately reactive, 

and the medially adjacent nucleus of the lateral olfactory tract (LOT), which is strongly 

reactive (Fig. 2A’, B’, C’). At caudal levels, however, it shows no clear boundary with 

the anterior division of the Me (Fig. 2D’). From the cytoarchitectural point of view, it 

shows a trilaminar organization, albeit less obvious than that of the adjacent CxA (Fig. 

2A-D). ACo shows a relatively loose organization of the cell layer, in which the 

boundary between layers II and III is difficult to discern (Fig. 2A-D). This laminar 

organization is more obvious at caudal levels, and can hardly be observed at the rostral 

tip of the structure (compare Fig. 2A with Fig. 2D). The deep border of layer III is also 

quite diffuse, at both rostral and caudal levels, where the ACo limits with the dorsal 

anterior amygdaloid area and anterior basomedial nucleus (BMA) respectively. The 

neuropil of the BMA shows positive immunoreactivity for calretinin, while the deep 

layer of the ACo is only moderately reactive (Martínez-García et al., 2012). However, 

the boundary between the two structures is diffuse (Fig. 2D-D’).  

Retrograde labeling after FG injections into the anterior cortical amygdaloid 

nucleus 
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Eight injections targeted the ACo, three of which displayed FG deposits that were 

restricted to this nucleus (Fig. 3A-D). The location of the injection sites was determine 

by means of fluorescence microscopy, since the labeled cells were more evident against 

the background fluorescence than in the immunolabeled sections. The extent of the 

effective injection site was considered as the area showing aggregated FG-labeled cells 

clearly stained above background (see Fig 3J). Two of the restricted injections involved 

the superficial layer I (cases #1339 and #1245) and one was mainly located in layer II 

(case #1321). For two of the three injection cases, traces of FG could be observed along 

the micropipette track in the caudoputamen, the lateral globus pallidus and the central 

amygdaloid nucleus (cases #1321 and #1339). Additionally, three more injections were 

centered in ACo, but extended to CxA, and in other two cases the injections affected the 

ACo and the posterolateral cortical amygdaloid nucleus (PLCo), which is caudolaterally 

adjacent. The pattern of labeling was similar in all the restricted injections (case #1339 

is illustrated in Fig. 4). In the non-restricted injections, the resulting labeling included 

the pattern observed in the restricted ones, as well as labeling due to the CxA (Cádiz-

Moretti et al., 2016b) or the PLCo (Úbeda-Bañón et al., 2007). 

In general, the ACo injections gave rise to a high density of retrograde labeling in the 

olfactory system, the chemosensory amygdala and the posterior intralaminar thalamus. 

In addition, the central and basolateral complex of the amygdala, several subnuclei of 

the bed nucleus of the stria terminalis (BST) complex, some cortical areas, the 

hippocampal formation, the septum and striatum, and several hypothalamic, 

mesencephalic and brainstem nuclei presented retrograde labeling in a degree from 

moderate to very scarce (Table 2).  

Retrograde labeling in the olfactory system 

After the injections of FG in the ACo, very dense labeling was observed throughout the 

mitral cell layer of the main olfactory bulb (MOB; Table 2, Figs. 1A, 4A and 5A). The 

somata of the mitral cells was darkly stained. Moreover, a few labeled cells were 

present in the external plexiform layer of the MOB (which may be tufted cells), as well 

as in the internal plexiform layer and in the glomerular layer of the MOB. The 

accessory olfactory bulb (AOB) also showed retrograde labeling in the mitral cell layer 

and a few labeled cells in its glomerular layer (Table 2, Figs. 1B, 4A and 5A), 

especially in the cases with superficial injections (cases #1245 and #1339).  
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Regarding the olfactory structures, some areas such as the piriform cortex (Pir) and 

endopiriform nucleus showed remarkable retrograde labeling. The Pir displayed a 

heterogeneous pattern of labeling along its rostro-caudal extent (Fig. 4B-F). In the 

anterior Pir, a moderate number of labeled cells was present in the inner layer II (Table 

2; Fig. 4B). In addition, layer I displayed a few labeled cells located just below the 

lateral olfactory tract. At intermediate levels of the Pir, labeling was dense and the 

labeled cells were distributed homogeneously through layers II and III (Fig. 4C-E and 

5C). Finally, in the caudal Pir, the density of labeling was moderate (Fig. 4F and 5D). 

Remarkably, in the most rostral injection (case #1339), the density of labeling along the 

Pir was higher than in the other two injections. The dorsal endopiriform nucleus also 

presented a heterogeneous labeling, showing more labeled somata in its rostral than its 

caudal part, while the ventral endopiriform nucleus showed a moderate number of 

labeled cells all along its rostrocaudal extent (Table 2, Fig. 4B-F and Fig. 5C, D). Both 

the Pir and the ventral endopiriform nucleus displayed darkly stained somata. The 

dorsal tenia tecta also showed a moderate number of labeled somata, mainly located in 

its layer III (Table 2) whereas in the ventral tenia tecta only scarce labeled cells were 

observed, most of which located in layer II (Table 2, not shown). Finally, a low density 

of labeled cell bodies was also observed in the three divisions (lateral, posterior, and 

medial) of the anterior olfactory nucleus (Table 2, Fig. 5B) and at the territory located 

just medial to the posterior aspect of the anterior olfactory nucleus (Fig. 5B). 

Retrograde labeling in the amygdala  

Within the amygdaloid complex, the nuclei composing the chemosensory amygdala 

displayed the densest populations of retrograde labeled cells. In addition, FG injections 

in the ACo rendered noticeable retrograde labeling in some deep nuclei of the 

amygdala, namely the central and basolateral divisions as well as the 

amygdalohippocampal area. 

In the olfactory amygdala (Table 2), ACo injections gave rise to a dense population of 

retrogradely labeled cells in the CxA (in its layers II and III) and in the LOT (mainly in 

layer II) (Fig. 4C-D). More caudally, labeled somata in the three layers of the PLCo, 

with more labeled cells observed in the rostral than in the caudal aspect of this nucleus 

(Fig. 4D-F and Fig. 5C, D). Adjacent to the caudal PLCo, the amygdalopiriform 

Page 16 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



 

 

17 

 

transition area displayed a moderate number of labeled cells (Table 2, Fig. 4F, G and 

Fig. 5D).  

In the vomeronasal amygdala (Table 2), injections located in the superficial ACo gave 

rise to very dense labeling in the bed nucleus of the accessory olfactory (BAOT), while 

in the deep injection labeling was moderate-to-dense (not shown). In addition, a 

moderate number of labeled cells was observed in the ventral and dorsal parts of the 

anterior amygdaloid area, as well as in the three subdivisions of the Me (Table 2, Fig. 

4C-E and Fig. 5C), where labeled neurons concentrate in the cell layer. Within the 

posterodorsal subnucleus of the Me, labeled cell bodies appeared mainly aligned in the 

outer limit of its cell layer (Figs. 4E and 5C). Caudally, a heterogeneous labeling was 

present in the posteromedial cortical amygdaloid nucleus (PMCo), with the labeled 

somata located in its cellular layer (Fig 4E-G). Its rostral part was almost depleted of 

retrograde labeling (Fig. 4E and 5C), while its caudal part showed a dense number of 

labeled somata (Fig. 4F, G and 5D).  

In the basolateral amygdaloid division, the anterior (BMA) and posterior part (BMP) of 

the basomedial amygdaloid nucleus showed a moderate density of labeled cells (Table 

2, Fig. 4C-F and Fig. 5C, D), with the BMA showing an especially dense population of 

labeled neurons in its rostral portion, next to the injection site (compare Fig. 4C and 

4D). Concerning the basolateral nucleus, labeling was scarce in its posterior and ventral 

subnuclei and very scarce in the anterior division (Table 2, Fig. 4D-F and Fig. 5C, D). 

Within the lateral nucleus, only the dorsolateral division showed consistent labeling, but 

always with a low number of labeled neurons (Table 2; Fig. 4D, E). In addition, the 

ventrolateral part of the lateral amygdaloid nucleus displays a few scattered cells in one 

injection. The amygdalohippocampal area presented also scarce labeling (Table 2, Fig. 

4E, F and Fig. 5D). Finally, regarding the central amygdala, it showed a few labeled 

cells, mainly in its medial subdivision (Table 2, Fig. 4D, E).  

Retrograde labeling in the bed nucleus of the stria terminalis (BST) 

In general, retrograde labeling in the BST was moderate or scarce. The 

posterointermediate part of medial division of BST (BSTMPI, Fig. 4C) and the 

intraamygdaloid division of the BST (BSTIA, Fig. 4E, Fig. 5C) presented a moderate 

number of labeled somata, and the posteromedial and posterolateral parts of the medial 

BST showed a few labeled neurons (Fig. 4C, Table 2). In the rest of the BST complex, 
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very scarce labeling was observed in the ventral and anterior parts of the medial 

division, as well as in the ventral and posterior part of the lateral BST (Table 2).  

Retrograde labeling in the cortex and the hippocampal formation 

In the mesocortex, labeling was dense in the insular region and scarce in the prefrontal 

and the perirhinal regions. Thus, the agranular insular cortex (AI) displayed a dense 

population of cells in layer V, which was unevenly distributed. Whereas the ventral part 

of the AI showed dense labeling, in its dorsal part labeled cells were scarce (Table 2, 

Fig. 4B). Finally, the posterior AI displayed a moderate density of labeling (Table 2, 

Fig. 4C, D). By contrast, the prelimbic cortex, the medial orbital cortex, the dorsal 

peduncular cortex, the infralimbic cortex, the claustrum, the perirhinal cortex and the 

ectorhinal cortex displayed sparse labeled cells (Table 2, Figs.1C and 4B-G). 

Within the hippocampal formation, the density of retrograde labeling was moderate in 

the lateral entorhinal cortex (LEnt) (Table 2, Fig. 4F, G) and scarce in the cell layer of 

the ventral aspect of CA3, CA1 and subiculum (Table 2, Fig. 4G).  

Retrograde labeling in the septum and basal forebrain  

In general, the injections in the ACo gave rise to scarce labeling in the basal cerebral 

hemispheres, with exception of the septohippocampal nucleus in the septum and the 

nucleus of the horizontal limb of the diagonal band (HDB)/magnocellular preoptic 

nucleus (MCPO). Thus, a dense population of darkly stained somata was observed in 

the septohippocampal nucleus, where labeling was high at rostral levels, just ventral to 

the dorsal tenia tecta (Table 2) and decreased caudally (Fig. 4B). Within the diagonal 

band, a few labeled cells were observed in its ventral aspect, next to the olfactory 

tubercle (Table 2, Fig. 4B), while a moderate density of darkly stained cells were 

present in the HDB and MCPO. In addition, few labeled somata were observed in the 

medial septal nucleus (Table 2, Fig. 4B) lining up at the boundary with the intermediate 

part of the lateral septal nucleus.  

A low density of lightly labeled cells was also present in the semilunar nucleus, the 

ventral pallidum and, more caudally, in the substantia innominata (Table 2, Fig. 4B-C). 

At these caudal levels (Fig. 4C), retrograde labeling was also observed in different 

components of the rostral extended amygdala including the interstitial nucleus of the 
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posterior limb of the anterior commissure and different subnuclei of the BST (see 

above).  

Retrograde labeling in the preoptic area and the hypothalamus 

Modern genoarchitecture studies have revealed that the preoptic region is part of the 

subpallium (Puelles and Rubenstein, 2015), and consequently we describe the results in 

this regions apart from the hypothalamus. Low numbers of labeled cells were present in 

the medial preoptic area, the medial preoptic nucleus and the anterior hypothalamic area 

(Table 2, Fig. 4C). 

In general, in the hypothalamus retrograde labeling consisted in scattered cells in 

different nuclei, with the exception of the posterior hypothalamic area. Thus, low 

numbers of labeled cells were present in the anterior hypothalamic area (Table 2, Fig. 

4C, D). Within the tuberal hypothalamus, a few labeled cells were seen in ventromedial 

hypothalamic nucleus and lateral hypothalamic area and very few in tuber cinereum 

(Table 2, Fig. 4D, E). In contrast, retrograde labeling was moderate in the posterior 

hypothalamic area (Table 2, Fig. 4F). In addition, at mamillary levels, a few cells 

appeared in the ventral premamillary nucleus, and even fewer cells were seen in its 

dorsal part and in the supramamillary nucleus (Table 2, Fig. 4F).  

Retrograde labeling in the thalamic complex 

After the FG injections, retrograde labeling was mainly observed in some midline nuclei 

of the thalamus and in the posterior intralaminar thalamic region. In the midline, a few 

labeled neurons were seen in the nucleus reuniens, but most of the labeling was located 

in the paraventricular thalamic nucleus (PV). There, the distribution of labeled cells is 

heterogeneous, with a moderate-to-low density in the anterior division of the nucleus 

and a moderate-to-high density in its posterior part (Fig. 4C-F; Table 2). At these caudal 

levels, there is a continuum of labeling bridging the posterior PV with the posterior 

intralaminar thalamus, which includes cells in the subparafascicular thalamic nucleus 

(SPF), the parvicellular part of SPF (SPFPC), and the posterior intralaminar thalamic 

nucleus (PIL) (Table 2, Fig. 4F, G and Fig. 5E). In addition, scarce labeling was present 

in the peripeduncular nucleus (PP), medial part of the medial geniculate nucleus 

(MGM) and the suprageniculate thalamic nucleus (Table 2, Fig. 4G and Fig. 5E). This 
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large population of labeled cells seems to extend rostrally until the prethalamic zona 

incerta, where a few labeled cells were observed (Table 2, Fig. 4D, E) 

Retrograde labeling in the midbrain and brainstem 

The midbrain and brainstem showed few labeled cells, with the exception of the 

parabrachial region where a moderately dense population of labeled cells was 

distributed in its lateral and medial divisions (Table 2, Figs. 4H and 5F).  

In the remaining nuclei of the midbrain and brainstem, the periaqueductal gray, the 

ventral tegmental area (VTA), the dorsal raphe nucleus and the locus coeruleus showed 

scarce labeling (Table 2, Fig. 4G, H). Moreover, in the rostral linear nucleus of the 

raphe and the oral part of the pontine reticular nucleus very scarce labeled cells were 

present (Table 2, not shown). In addition, in the cases where small tracer deposits 

appeared along the micropipette tract in the caudate putamen, labeled cells were 

observed in the sustantia nigra (Fig. 4F, G).  

Contralateral retrograde labeling  

Although the observed retrograde labeling was mostly ipsilateral to the injection sites, a 

few labeled cells were also present in a number of contralateral nuclei. In the olfactory 

system, the rostral Pir presented moderate labeling located in its layer II. A few labeled 

somata were also observed in the caudal Pir. The dorsal tenia tecta showed a very 

scarce number of labeled cells in its layer III. Within the amygdala, the contralateral 

PLCo showed scarce labeling and the PMCo and BMA very few labeled somata. In the 

contralateral LEnt a few labeled cells were observed. The diagonal band and the 

substantia innominata showed a few labeled cells in the contralateral hemisphere. Also 

in the thalamus, scarce contralateral labeling was observed in the SPF, SPFPC and PP 

and, to a lesser extent, the PIL, PV, and in the periventricular fiber system, nucleus 

reuniens and the prethalamic zona incerta. The hypothalamus contralateral to the 

injection displayed a few labeled cells as well, located in the ventromedial hypothalamic 

nucleus, the lateral hypothalamic area and the posterior hypothalamic area. Finally, a 

low number of labeled neurons was also observed contralaterally in the periaqueductal 

gray, VTA, rostral linear nucleus of the raphe and parabrachial nucleus.  

Anterograde labeling after BDA injections into the ACo 
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Eight injections were located in the ACo, four of which were centered and restricted to 

this nucleus (cases #1243, #1245, #1335 and #1340, Fig. 3E-I). The extent of the 

effective injection sites was considered as the area showing an intensely dark 

extracellular deposit of HRP reaction product obscuring the details of the underlying 

tissue (see Fig 3K). In three cases #1340, #1243, #1245 the injection involved the 

superficial and deep layers of the ACo, whereas the injection #1335 was very small and 

centered in layer II at caudal levels. Two of the four injections (#1243 and #1245) 

presented a small deposit of tracer along the micropipette track in the BMA and dorsal 

anterior amygdaloid area (Fig. 3E, H). All of the restricted injections gave rise to a 

consistent pattern of anterograde labeling (case #1340 is illustrated in Fig. 6). In 

addition, other four injections were mainly located in the ACo, but involved other nuclei 

such as the CxA (n = 2), the BMA (n = 1) or the PLCo (n = 1). These non-restricted 

injections resulted in a similar pattern of labeling to that described following the 

restricted injections, although as expected additional fiber labeling was observed.  

In general, the ACo injections gave rise to widespread projections, with the densest 

labeling located in some nuclei of the olfactory system, the chemosensory amygdala 

and, to a lesser extent, in some structures of the central extended amygdala, basal 

forebrain and tuberal hypothalamus.  

Anterograde labeling in the olfactory system 

The injections in the ACo did not gave rise to anterograde labeling in the MOB. In the 

AOB, tracer injections affecting all layers of the nucleus (Figs. 3 and 6G) gave rise to a 

small amount of anterogradely labeled fibers in the AOB, present mainly in the mitral 

cell layer (Fig. 6A). In addition, very scarce labeling was observed in the granular cell 

layer of the accessory olfactory bulb (Fig. 6A).  

In the olfactory structures, the Pir and the endopiriform nucleus showed the highest 

density of labeled fibers. Anterograde labeling in the Pir was particularly dense in its 

caudal part (Table 2, Fig. 6B-J), and was observed mainly in its layers I and III.  In the 

endopiriform nucleus, fiber labeling is denser in the ventral endopiriform nucleus 

(Table 2, Fig. 6B-J). The tenia tecta presented moderate labeling in its ventral part, and 

only scarce labeling in its dorsal part. In addition, the posterior part of the anterior 

olfactory nucleus showed scarce labeling (Table 2, Fig. 6B). Finally, very scarce 
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labeling can be observed in the lateral, medial and ventral part of the anterior olfactory 

nucleus (Table 2, Figs. 1F and 6B). 

Anterograde labeling in the amygdala  

As described for retrograde labeling, the chemosensory amygdala showed the highest 

density of anterogradely labeled fibers, with important projections being present also to 

the basomedial amygdala and part of the central amygdala (see Table 2). 

In the olfactory amygdala (Table 2), BDA injections gave rise to very dense anterograde 

labeling in the PLCo, present mainly in layer I (Figs. 1D, 6H-J and 7D). In addition, the 

CxA and the LOT showed a moderate level of fiber labeling (Figs. 6E-H and 7C), and 

the amygdalopiriform transition area displayed a scarce number of labeled fibers (Figs. 

6K and 7E). 

In the vomeronasal amygdala (Table 2), injections in the ACo gave rise to dense fiber 

labeling in the Me. The anterior Me showed a very dense presence of labeled fibers, 

centered in its anterodorsal aspect. The posterodorsal and posteroventral Me displayed a 

dense projection from ACo (Figs. 6G-I and 7D). In addition, in the dorsal and ventral 

parts of the anterior amygdaloid area, a very dense presence of labeled fibers was 

observed (Figs. 6E, F and 7C). In the BAOT (Fig. 6G) and the PMCo (Figs 6J, K and 

7D) moderate fiber labeling was present. 

The basolateral complex displays a very dense fiber labeling in the BMA (Fig. 6G-I) 

and dense labeling in BMP (Figs. 6I, J and 7D). In addition, the ventral part of the 

basolateral nucleus (Fig. 6I) presented a moderate level of labeled fibers. Other regions 

of the basolateral complex, like its anterior and posterior subnuclei, the dorsolateral part 

of the lateral nucleus and the amygdalohippocampal area showed scarce projections 

from the ACo (Figs. 6G-K and 7D). 

In the central nucleus, moderate anterograde labeling appeared in its medial part, and 

scarce labeling was present in the capsular and lateral parts (Fig. 6G-I). In addition, very 

scarce levels of labeled fibers were present in the amygdalostriatal transition area (Table 

2). 

Anterograde labeling in the bed nucleus of the stria terminalis 
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The injections in the ACo resulted in moderate anterograde labeling in the BST (see 

Table 2). A moderately dense terminal field was observed in the BSTIA (Figs. 6H, I and 

7D). The ventral part of the lateral and medial BST divisions (Figs. 6D and 7B), as well 

as the posterointermediate and the posteromedial aspects of the medial BST (Figs. 6E 

and 7C) showed a moderate presence of labeled fibers. On the other hand, the posterior 

(Figs. 6D, E and 7B) and dorsal (Figs. 6D and 7C) parts of the lateral BST division, as 

well as the anteromedial BST and the posterolateral aspect of the medial BST presented 

scarce labeling. 

Anterograde labeling in the cortex and the hippocampal formation 

In the hippocampal formation moderate anterograde labeling was present in the caudal 

CA1, between the stratum lacunosum molculare and the stratum radiatum (Figs. 1E, 

6K and 7E). Fiber labeling was also moderate in LEnt (Fig. 6K). 

Regarding the cerebral cortex, the observed labeling was scarce in the medial orbital, 

dorsal peduncular, perirhinal (Figs. 6B and H-K and 7E) and infralimbic cortices (Figs. 

6B and 7A). In addition, very scarce levels of labeled fibers were present in the 

agranular insular cortex (Fig. 6B-G), the prelimbic cortex (Figs. 6B and 7A), the 

claustrum (Fig. 6C-G) and the ectorhinal cortex (Fig. 6H-K). 

Anterograde labeling in the septum and basal forebrain  

In the lateral septal complex, a low number of fibers were observed in the 

septohippocampal nucleus (Fig. 6C). In the remaining nuclei of the lateral septum only 

very scarce anterograde labeling was present (Table 2, Fig. 6C, D). In contrast, the 

diagonal band showed dense fiber labeling in the HDB/MCPO, located mainly in its 

ventral aspect (Figs. 6D-E and 7B).  

Within the striato-pallidal complex, a high density of labeled fibers was observed in the 

substantia innominata (Figs. 6D-F and 7B). Dense anterograde labeling was also 

present in the interstitial nucleus of the posterior limb of the anterior commissure, 

especially in its medial subdivision (Figs. 6D-F and 7B, C), and moderate fiber labeling 

was observed in the semilunar nucleus and the ventral pallidum (Figs. 6C-E and 7C). 

Within the ventral striatum, scarce labeling appeared in the olfactory tubercle (Figs. 6B-

D and 7B), with axons mainly surrounding the islands of Calleja. Only a few fibers 

enter both the ventromedial and the major islands. In addition, a small number of fibers 
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were observed in the nucleus accumbens, both in the core and caudally in the shell (Fig. 

6C).  

Anterograde labeling in the preoptic area and hypothalamus 

In the preoptic region, there was a moderate amount of anterograde labeling in the 

medial preoptic nucleus and medial preoptic area (Fig. 6C-F). In addition, scarce 

labeling was observed in the lateral preoptic area (Fig. 6C) and, more rostrally, in the 

anterior commissural nucleus. A few labeled fibers could also be found in the median 

preoptic nucleus and the anterodorsal preoptic nucleus (Fig. 6D, E).  

In the hypothalamus, anterograde labeling appeared in many hypothalamic nuclei, 

although dense fiber labeling was present only in the lateral hypothalamic area 

(Table 2).  

At anterior levels (paraventricular and suparaventricular areas), a low density of labeled 

fibers was observed in the paraventricular hypothalamic nucleus, the anterior 

hypothalamic area, the lateroanterior hypothalamic nucleus (Fig. 6F), the 

suprachiasmatic nucleus and the periventricular hypothalamic nucleus (Fig. 6F, G).  

In the tuberal region, a dense presence of labeled fibers was observed in the lateral 

hypothalamic area, mainly in the magnocellular nucleus of the lateral hypothalamus 

(Fig. 6H, I). In addition, moderate fiber labeling was observed in the medial tuberal 

nucleus and the terete hypothalamic nucleus (Fig. 6J). Finally, scarce labeled fibers 

were present in the retrochiasmatic area, the dorsomedial and ventromedial 

hypothalamic nuclei, the PH and the arcuate nucleus (Fig. 6H, I), as well as in the 

subthalamic nucleus, extending into the parasubthalamic nucleus. 

Finally, scarce anterograde labeling was seen in the dorsal premamillary nucleus and the 

supramamillary nucleus (Table 2). 

Anterograde labeling in the thalamic complex 

The injections in the ACo resulted in scarce, but widespread, anterograde labeling in the 

thalamus. Fiber labeling was moderate in the nucleus of the stria medullaris (Fig. 6F), 

and a few fibers could also be observed in the lateral habenula. In addition, scarce 

labeled fibers are present in several midline thalamic nuclei (nucleus reuniens, PV, 

central medial, mediodorsal, intermediodorsal and paratenial thalamic nuclei, Fig. 6F-J). 
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A few labeled axons reached the posterior intralaminar thalamic nuclei (SPFPC, PIL, 

PP, the suprageniculate thalamic nucleus, the parafascicular thalamic nucleus, and the 

triangular part of the posterior thalamic nucleus, Fig. 6J, K). Finally, a few labeled 

fibers were present in the prethalamic zona incerta. 

Anterograde labeling in the midbrain and brainstem 

The midbrain and brainstem showed low levels of anterograde labeling, with the 

exception of the pedunculopontine tegmental nucleus (Fig. 6L), which displayed a 

moderate level of labeled fibers. There was also scarce labeling in the periaqueductal 

gray, where the fibers were mainly present in its lateral part (Fig. 6K), the compact part 

of the substantia nigra (Fig.  6K), the VTA, the lateral parabrachial nucleus and the 

locus coeruleus (Figs. 6K-M and 7E, F). Part of the labeled fibers in the substantia nigra 

appeared to be fibers of passage. Finally, a few labeled fibers were observed in some 

other midbrain (parvicellular part of the red nucleus, reticular part of the substantia 

nigra, deep mesencephalic nucleus) and brainstem structures (medial parabrachial 

nucleus, dorsal raphe and paramedian raphe nucleus) (Table 2).  

Contralateral anterograde labeling  

The anterograde labeling obtained following tracer injection in the ACo was mainly 

ipsilateral. However, a few fibers could be observed crossing the midline in the 

ventralmost part of the anterior commissure. In the contralateral telencephalon, scarce 

labeling was present in the VTT, the BSTMV, BSTMPM, BSTLV and BSTLP, in the 

diagonal band complex and in the SI. In the hypothalamus, scarce innervation appeared 

in the LH (at anterior and tuberal levels) and in the MCLH. Very few fibers were 

present in some of the midline thalamic nuclei (PVA, CM, Re and MD). Finally, in the 

brainstem very scarce innervation appeared in the PAG, VTA, SNC and PPTg. 

 

DISCUSSION 

The chemosensory amygdala is an evolutionary conserved part of the amygdaloid 

complex in vertebrates (Martínez-García et al., 2007), which plays a key role in social 

and sexual behavior. As part of a long-term project aiming to characterize the 

anatomical connections of the chemosensory amygdala, here we report a comprehensive 
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description of the afferent and efferent connections of the ACo in mice (see Fig. 8), for 

which very scarce data are available (Martínez-García et al., 2012).  

Olfactory system 

The results of the retrograde tracing experiments confirm that the ACo receives a major 

input from the main olfactory bulb, and a minor one from the accessory olfactory bulb, 

corroborating previous studies (Pro-Sistiaga et al., 2007; Kang et al., 2009; Cádiz-

Moretti et al., 2013). Thus, the MOB provides a predominant olfactory input to the 

ACo, while the vomeronasal input from the AOB is less relevant, at least in anatomical 

terms. The retrograde labeling in the MOB and AOB following the tracer injections in 

the ACo was observed throughout their mitral cell layer, and therefore showed no 

topographic organization. These results indicate that the projections from the bulbs do 

not arise from particular subsets of mitral cells, but instead from large populations 

(maybe most of the mitral cells) probably responsive to many odorants or chemical 

signals. In this respect, a previous study found that Fos expression in the ACo was 

induced equally by a novel odor and by cat odor (Dielenberg et al., 2001). Regarding 

the conspecific odors, the exposure to volatiles derived from male-soiled bedding 

induced Fos expression in the ACo in female mice (Moncho-Bogani et al., 2005). 

Notably, the Fos induction in the ACo was observed equally when the male volatiles 

were attractive (because of previous chemosensory experience of the females) and when 

the male volatiles induced no attraction (in inexperienced females). Taken together, the 

results of these studies (Dielenberg et al., 2001; Moncho-Bogani et al., 2005) suggest 

that general odorants, and not only emotionally-labeled chemical cues, apparently 

activate the ACo. The activation by general odorants may allow the ACo to be involved 

in the association of olfactory cues with other stimuli.   

In agreement with previous studies, the ACo does not project back to the MOB (de 

Olmos et al., 1978; Luskin and Price, 1983; Shipley and Adameck, 1984; Petrovich et 

al., 1996). However, we found a very light projection to the AOB. The fact that it has 

not been observed in rats may be due to its very small entity or to interspecies 

differences.  

Our findings show that the ACo receives substantial projections arising from the 

olfactory cortex, a hodological feature shared with the CxA, the Me and the PMCo 

(Gutiérrez-Castellanos et al., 2014; Cádiz-Moretti et al., 2016a, 2016b). The ACo also 
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projects back to the olfactory cortex. Previous studies already showed that the olfactory 

cortex is reciprocally connected with the ACo (Luskin and Price, 1983; Petrovich et al., 

1996; McDonald, 1998; Majak et al., 2004). The ACo receives denser projections from 

the caudal than from the rostral Pir, a hodological feature also showed by the Me 

(Cádiz-Moretti et al., 2016a). In contrast, the CxA shows the opposite pattern, receiving 

more projections from the rostral Pir (Cádiz-Moretti et al., 2016b). According to 

electrophysiological studies, the posterior Pir shows associative encoding characteristics 

(Calu et al., 2007), and thus may act as an associative cortex that sends to the ACo 

highly processed olfactory information that includes the behavioral significance of the 

odorant.    

Connections with the amygdaloid complex and BST 

The ACo receives its strongest projections from the chemosensory amygdala, and gives 

rise to moderate projections back to these structures. Our results showed that it receives 

important projections from the olfactory amygdaloid nuclei, such as the PLCo, CxA and 

LOT, and projects back mainly to the PLCo. The efferent projections of the LOT 

(Santiago and Shammah-Lagnado, 2004) and PLCo (Majak and Pitkänen, 2003, named 

periamygdaloid cortex by these authors) have been reported with restricted injections of 

anterograde tracers.  

Regarding the vomeronasal amygdala, the ACo received important projections arising 

from the PMCo and BAOT and moderate projections from the Me and anterior 

amygdaloid area. Similar results were obtained with anterograde injections in the PMCo 

(Canteras et al., 1992; Gutiérrez-Castellanos et al., 2014) and Me (Canteras et al., 1995; 

Pardo-Bellver et al., 2012), with minor differences regarding the density of the 

anterograde labeling observed in ACo. The projections from the ACo back to the 

vomeronasal amygdala are relatively lighter, with the exception of the projection to the 

medial nucleus, in agreement with previous results (Petrovich et al., 1996; Cádiz-

Moretti et al., 2016a). The projection from the ACo to the Me has been proposed to be 

the substrate allowing the association of olfactory and vomeronasal stimuli (Keshavarzi 

et al., 2015; see Guthman and Vera, 2016).  

In summary, the ACo is reciprocally connected with both the olfactory and vomeronasal 

nuclei, similar to the situation reported for the Me and PMCo. Therefore, although the 

ACo receives a predominant olfactory input from the MOB, its bidirectional 
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connections with the secondary centers within the chemosensory amygdala allow 

further integration of olfactory and vomeronasal information.  

Concerning the deep amygdaloid nuclei, the ACo received moderate projections from 

the basomedial nucleus and minor projections arising from the basolateral, lateral and 

central amygdaloid nuclei (Table 2). These results are consistent with previous findings 

(for the lateral amygdala, Pitkänen et al., 1995; for the basolateral nucleus, Savander et 

al., 1995). With regard to the basomedial nucleus, consistent with our results Petrovich 

et al. (1996) described a dense projection from the BMA to ACo, while the BMP 

originated only a sparse input. Savander et al. (1996) found similar results (see their 

figures 3 and 5), although they described the basomedial projections to the ACo as light 

in general. The projections back to the basomedial nucleus are quite dense (Petrovich et 

al., 1996), while the projections to the lateral and basolateral nuclei are very light. The 

ACo gives also rise to a moderate projection to the medial part of the central nucleus, 

described also in rats (Petrovich et al., 1996; Savander et al., 1996). Therefore, ACo is 

reciprocally connected with the basomedial nucleus, which has been recently shown to 

be involved in controlling fear and anxiety (Adhikari et al., 2015) and social stress 

(Mesquita et al., 2016). Moreover, the ACo projects directly to the medial central 

nucleus, which is a key structure in activating the fear responses (Ehrlich et al., 2009). 

This connectivity strongly suggests its involvement in processing emotional information 

(Fig. 8). 

Regarding the BTS complex, the ACo receives projections mainly arising from the 

BSTMPI and the BSTIA. The projections back to the BST are more important, 

innervating most of the complex. These findings are in agreement with previous studies 

reported in rats (Dong and Swanson, 2004, 2006a, 2006b), although the efferent 

projections to the anterior subdivisions to the BST appeared somewhat lighter in rats 

(Petrovich et al., 1996). The projection to the anterior BST is consistent with 

innervation of the central amygdala described above, since these structures form the 

central extended amygdala (Martínez-García et al., 2012). The reciprocal connections 

with the posterior BST (and the medial amygdala) indicate that the ACo modulates the 

network of sexually dimorphic, steroid-sensitive structures involved in the control of 

sociosexual behaviors (Newman, 1999; Otero-García et al., 2014). 

Connections with the cortex and hippocampal formation 
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The results of the present work show minor connections of the cerebral cortex with the 

ACo, with the exception of some prefrontal regions and the AI. The connections with 

the agranular insular cortex have been previously described in rats with anterograde 

(McDonald et al., 1996; Shi and Cassell, 1998; Luskin and Price, 1983) and retrograde 

tracers (Haberly and Price, 1978; Ottersen, 1982). The input from the AI is shared with 

the Me. Therefore, the ACo and the Me, which are multimodal structures as indicated 

by the whole pattern of afferents, receive a common input from the AI. The AI receives 

convergent projections from the gustatory and viscerosensory areas of the dysgranular 

and granular insular cortex and from the Pir (Shi and Cassell, 1998). In addition, it is 

connected with the gustatory thalamic nucleus. Therefore, the projections arising from 

the ventral and posterior AI may be modulating olfactory information processing in the 

ACo, placing the odor in a gustatory and viscerosensory context.  

Besides the afferent projections from the AI, the ACo receives minor projections arising 

from the prefrontal cortex (infralimbic and prelimbic areas), as previously reported in 

rats (Hurley et al., 1991; Takagishi and Chiba, 1991; McDonald et al., 1996; Shi and 

Cassell, 1998).  

The ventral part of the hippocampus shows light reciprocal connections with the ACo, 

as well as with the Me (see Cádiz-Moretti et al., 2016a) and the PMCo (Gutiérrez-

Castellanos et al., 2014). Therefore, on anatomical grounds the ventral hippocampus can 

influence neural processing in the chemosensory amygdala.  

Connections with the septum and basal forebrain 

The basal forebrain projection to the ACo is a common trait of the corticomedial 

amygdaloid nuclei (Ottersen, 1980; Martínez-García et al., 2012). However, the 

projections to the LOT (Grove, 1988) and the CxA (Cádiz-Moretti et al., 2016b) arise in 

the cholinergic neurons of the basal forebrain. In contrast, the ACo does not show 

cholinergic innervation, suggesting that the basal forebrain input originates in non-

cholinergic (probably GABAergic) neurons (Semba, 2000). A similar projection from 

the basal forebrain innervates also the Me (Cádiz-Moretti et al., 2016a) and the PMCo 

(Gutiérrez-Castellanos et al., 2014), which is probably non-cholinergic according to the 

negative reaction of these structures to the AchE histochemistry (Paxinos and Franklin 

2004). The ACo gives rise to a moderate projection back to the basal forebrain, 
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targeting mainly the diagonal band and the substantia innominata, and to a minor extent 

the olfactory tubercle (Novejarque et al., 2011).  

Connections with the hypothalamus 

The hypothalamus is considered an essential interface between the endocrine, 

autonomic and somatomotor systems (Simerly, 2015). Within the variety of behaviors 

in which the hypothalamus is involved, it regulates aggressive-defensive responses and 

the expression of appropriate sexual and maternal behaviors (Simerly, 2015). In rodents, 

the expression of these behaviors depends largely on the chemosensory systems 

(Martínez-García et al., 2009; Baum and Cherry, 2015). The efferent projections from 

the ACo to the hypothalamus are relatively light, with the exception of a number of 

structures of the lateral hypothalamus, especially at tuberal levels. This pattern of 

projections is consistent with previous descriptions (Price et al., 1991; Petrovich et al., 

1996; Niu et al., 2012). The hypothalamic targets of the ACo include the ‘hypothalamic 

aggression area’ (Toth et al., 2010), located in the mediobasal hypothalamus lateral to 

the ventromedial hypothalamic nucleus. Thus, the ACo may be involved in initiating 

aggressive responses towards conspecifics, which are known to be elicited by chemical 

cues (Chamero et al., 2007; Martín-Sánchez et al., 2015). In fact, maternal aggression in 

lactating female mice has been shown to induce Fos expression in the ACo (Gammie 

and Nelson, 2001). 

It is also possible that the projections from the ACo to the lateral hypothalamus reach 

the neurons projecting to the preganglionic neurons of the spinal cord (Saper, 1995), 

which in turn innervate the sympathetic neurons of the superior cervical ganglion 

controlling the vomeronasal pumping mechanism (Meredith and O’Connell, 1979). This 

circuit has been proposed to mediate olfactory-elicited vomeronasal pumping 

(Martínez-Marcos et al., 2002).  

Connections with the thalamus 

Our results showed that the thalamus send important projections to ACo from the 

posterior intralaminar complex, and minor projections arising from the paraventricular 

thalamus and the nucleus reuniens. The ACo sends back moderate projections to the 

thalamus, which innervate several midline thalamic nucleus (Fig. 8).  
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The projections arising from the paraventricular thalamus and the nucleus reuniens were 

previously described in rats (Moga et al., 1995; Turner and Herkenham, 1991; Vertes et 

al., 2006). The paraventricular thalamic nucleus has recently been shown to be involved 

in the expression of learned fear in an auditory fear conditioning paradigm (Li et al., 

2014). Since electrophysiological evidence implicate the ACo in olfactory fear 

conditioning (Sevelinges et al., 2004), it may be possible that the PV projection to the 

ACo play a role in the expression of fear to olfactory stimuli.  

Regarding the posterior intralaminar complex of the thalamus, the SPF, SPFPC and PIL 

showed important projections to the ACo, while the MGM, PP and suprageniculate 

nucleus sent minor projections. The projections arising from the MGM and PIL to the 

ACo have been previously reported (Turner and Herkenham, 1991; LeDoux et al., 

1985). These structures (MGM and PIL) receive auditory and somatosensory inputs 

(LeDoux et al., 1987), and contain tone-responding and somatosensory-responding 

neurons (Bordi and LeDoux, 1994). Moreover, electrical stimulation of the PIL/MGM 

area functions as an effective unconditioned stimulus inducing fear learning 

(Cruikshank et al., 1992). Therefore, consistent with the electrophysiological data 

showing that the ACo plays a role in olfactory fear conditioning (Sevelinges et al., 

2004), it receives olfactory information from the olfactory bulb (as well as from the Pir) 

and somatosensory information from the posterior intralaminar thalamus, making it a 

good candidate to be involved in this kind of learning.  

In addition to footshock-related somatosensory information relayed by some posterior 

intralaminar nuclei, genital somatosensory information has been proposed to reach the 

SPFPC (the medial aspect of the posterior intralaminar thalamus). In fact, Fos studies 

have shown that this nucleus is activated in male hamsters when mating to ejaculation 

(Coolen et al., 1997). Therefore, the thalamic projection to ACo may relay both aversive 

and appetitive aspects of somatosensory information. 

Connections with the midbrain and brainstem  

The brainstem and midbrain showed minor projection to and from the ACo, with the 

parabrachial nucleus being the structure with somewhat denser afferent projections. 

The afferent projections from the parabrachial nucleus to the ACo have been previously 

reported in rats (Bernard et al., 1993). The parabrachial nucleus also projects to the Me 
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(Cádiz-Moretti et al., 2016a) and to the central and basolaterateral complex (Bernard et 

al., 1993). The parabrachial nucleus has been shown to integrate taste and visceral 

sensory information in the context of taste aversion learning (Yamamoto et al., 1994). 

Therefore, the reciprocal connection between the parabrachial nucleus and the ACo may 

relate taste and viscerosensory information to incoming olfactory information.  

The connectivity of the ACo compared with that of the adjacent structures (CxA, 

Me and BMA)  

The ACo limits laterally with the CxA and medially with the Me, and has an its inner 

diffuse boundary with the BMA. The connectivity pattern of each one of these 

structures shows both similarities and differences with that of the ACo. 

The laterally adjacent CxA shows a restricted pattern of (mainly intratelencephalic) 

afferent projections, originated mainly by the olfactory system and the basal forebrain 

(Cádiz-Moretti et al., 2016b).  It lacks the thalamic input shown by the ACo. The ACo, 

in contrast, does not receive the cholinergic input from the basal forebrain that is one of 

the defining features of the CxA. Regarding the efferent projections, the CxA gives rise 

to very dense projections to the basolateral amygdaloid nucleus, which receives only 

minor projections from ACo. In addition, the CxA projections to the thalamus, midbrain 

and brainstem are very small, whereas the projections from the ACo to these brain 

regions, although light in general, are much more extensive (Cádiz-Moretti et al., 

2016b). 

Medially, the ACo limits with the anterior Me. Compared to the ACo, the anterior Me 

shows much stronger interconnections with the vomeronasal system (AOB, BAOT, 

PMCo and posteromedial BST) (Cádiz-Moretti et al., 2016a) and gives rise to a dense 

projection to the ventromedial hypothalamus (Pardo-Bellver et al., 2012). 

The most diffuse boundary of the ACo is that with the BMA, which is located deep to 

it. In fact, from the developmental point of view the neurons of the BMA and the ACo 

probably originate in the same region of the neuroepithelium (Martínez-García et al., 

2012). Compared with the connections of the ACo, the BMA projects more strongly to 

the nucleus accumbens (Novejarque et al., 2011) and to the central amygdala (Petrovich 

et al., 1996; our unpublished observations in mice). Regarding the afferent projections 

to the BMA, there are no studies focused on these projections in mice, but in rats the 
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BMA receives a strong intraamygdaloid projection from the lateral nucleus (Pitkänen et 

al., 1995), which is lacking in the case of the ACo. In addition, the BMA is strongly 

interconnected with the hippocampal and parahippocampal formations (Pitkänen et al., 

2000), whereas the ACo shows only light interconnections with these structures. 

Finally, the BMA lacks connections with the midbrain and brainstem (Pitkänen, 2000), 

which are quite extensive (although relatively light) in the case of the ACo. 

Functional remarks 

In spite of the described differences, the set of afferent projections described for the 

ACo is, to some extent, similar to that of the medially adjacent Me (Cádiz-Moretti et al., 

2016a) and (taken as a whole) quite different from those of the laterally adjacent CxA 

(Cádiz-Moretti et al., 2016b). In fact, the thalamic projections to the ACo and Me are 

very similar, in particular those originated by the posterior intralaminar thalamic nuclei. 

This thalamic input, together with the afferents arising from the brainstem, suggest that 

taste, viscerosensory, somatosensory and nociceptive information can reach the ACo, 

and consequently it may be involved in a broad number of behaviors. Previous studies 

using Fos as an activity marker have shown activation of the ACo in both aversive and 

appetitive motivated tasks (Knapska et al., 2007). Thus, it seems that the ACo may play 

a role in most emotional behaviors as long as there is relevant olfactory information 

involved. The set of efferent projections of the ACo differs from the pattern described 

for the Me, especially regarding the projections to the central extended amygdala and 

the lateral hypothalamus. These specific outputs suggest a role in activating defensive 

and/or aggressive responses. 
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FIGURE LEGENDS 

Figure 1. Photomicrographs of cases of retrograde (A-C) and anterograde (D-F) labeling 

of different density. To illustrate the criteria used to rate the density of the obtained 

labeling, examples of very dense, moderate or very scarce labeling are shown. (A) 

very dense retrograde labeling in the mitral cell layer of the main olfactory bulb. 

(B) moderate retrograde labeling in the mitral cell layer of the accessory olfactory 

bulb. (C) very scarce retrograde labeling in the infralimbic cortex. Note the 

granular deposits of DAB in the cytoplasm (arrowhead). (D) very dense 

anterograde labeling in the posterolateral cortical nucleus of the amygdala, 

especially in its layer I. (E) moderate anterograde labeling in the ventral aspect of 

the CA1 of the hippocampus. (F) very scarce anterograde labeling in the medial 

division of the anterior olfactory nucleus (arrowhead). Scale bar in A, valid for B-F: 

100 µm.  

Figure 2. Photomicrographs of Nissl staining (A, B, D, E) and acetyl cholinesterase 

histochemistry (A', B', C', D') of transverse sections at different antero-posterior 

levels of the amygdaloid complex. Note the differences in acetyl cholinesterase 

reactivity between the cortex-amygdala transition zone and anterior cortical amygdala 

(A’-D’) and the differences in their laminar definition (A- D). Note the loose 

organization of cell layers in the ACo. Scale bar in A, valid for A-C and A'- C': 500 µm. 

Scale bars in D and D’: 500 µm 

Figure 3. Injection sites of Fluorogold and BDA in the anterior cortical amygdala of mice. 

(A–I) Schematic drawings representing the extent of the tracer injection deposits 

restricted to the anterior cortical amygdaloid nucleus. The injections of Fluorogold 

(retrograde tracer) are represented in panels A-D; the injections of BDA (anterograde 

tracer) are shown in panels E-I. Single injections are identified with the animal code. (J-

K) Photomicrographs through the amygdala showing representative injection sites of 

Fluorogold (J, fluorescence microscopy) and BDA (K). Scale bar in J, valid for K = 200 

µm 

Figure 4. Summary of the distribution of retrograde labeling following a Fluorogold 

injection in the anterior cortical amygdaloid nucleus, plotted onto schematic 
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drawings of parasagittal (A) and frontal (B-L) sections through the mouse brain. 

The injection site is depicted in panel (C). B is rostral, L is caudal. The schematic 

drawings are based on the #1339, which presented the largest restricted injection site 

(see Fig. 3A). For abbreviations, see list. 

Figure 5. Photomicrographs of parasagittal (A) and frontal (B-F) sections through the 

mouse brain, illustrating the retrograde labeling observed in animals receiving a 

Fluorogold injection in the anterior cortical amygdaloid nucleus. The images 

correspond to the retrograde labeling presented in cases #1339 (A-D; injection site 

showed in Fig 3J) and #1245 (E, F; injection site showed in Fig. 3F-H). (A) 

Retrogradely labeled mitral cells in the main olfactory bulb. Inset in A shows retrograde 

labeling in the mitral and glomerular cell layer (see arrowheads) of the accessory 

olfactory bulb. (B) Retrograde labeling present in the territory between the posterior 

aspect of the anterior olfactory nucleus and the olfactory tubercle. (C) Numerous 

labeled cells in the caudal piriform cortex and dorsal part of the endopiriform nucleus 

within the olfactory system. In the amygdala, dense labeling is present in the 

posterolateral cortical amygdaloid nucleus, and a moderate labeling appears in the 

posteroventral and posterodorsal subdivision of the medial amygdaloid nucleus, the 

intraamygdaloid division of the bed nucleus of the stria terminalis and the posterior part 

of the basomedial amygdaloid nucleus. Note the heterogeneous distribution of the 

retrograde labeling in the posterodorsal Me, with the labeled cells mainly located in the 

external part of its cellular layer (arrowheads). At this level, the posteromedial cortical 

amygdaloid nucleus is almost devoid of labeling. (D) Dense retrograde labeling in the 

caudal part of the posteromedial cortical amygdaloid nucleus and moderate density of 

retrogradely labeled cells in the amygdalopiriform transition area. Within the olfactory 

cortex, dense labeling is present in the posterior part of the piriform cortex. (E) 

Numerous retrogradely labeled cells in the posterior intralaminar thalamic region. (F) 

Retrogradely labeled cells in the medial and lateral divisions of the parabrachial nucleus 

and in the locus coeruleus. For abbreviations, see list. Scale bar in A: 1 mm. Scale bar in 

inset in A: 250 µm. Scale bar in B (valid for B–D): 500 µm. Scale bar in E (valid for F): 

200 µm. 

Figure 6. Summary of the distribution of anterograde labeling following a BDA injection 

in the anterior cortical amygdaloid nucleus, plotted onto schematic drawings of 

parasagittal (A) and frontal (B-M) sections through the mouse brain. The injection 
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site is shown in panel (G). B is rostral, M is caudal. The schematic drawings are based 

on the case #1340, which presented a restricted injection site and with no BDA traces 

along the pipette track (photomicrograph of injection site showed in Fig. 3K). For 

abbreviations, see list. 

Figure 7. Photomicrographs of frontal sections through the mouse brain, illustrating the 

anterograde labeling resulting after BDA injections in the anterior cortical 

amygdaloid nucleus. (A) Anterograde labeling in the dorsal peduncular cortex, the 

medial orbital cortex and infralimbic cortex. Inset in A shows a high magnification 

detail of the labeled fibers. (B) Anterograde labeling present in the basal forebrain and 

several structures of the central extended amygdala, such as the substantia innominata, 

the interstitial nucleus of the posterior limb of the anterior commissure and the anterior 

bed nucleus of the stria terminalis (BST). (C) Dense anterograde labeling next to the 

injection site, and in the posterior BST. Note that the labeled fibers avoid, to some 

extent, the nucleus of the lateral olfactory tract. Inset in C shows a high magnification 

detail of the labeled fibers in the different subdivisions of the posterior BST. (D) 

Anterograde labeling at caudal level of the amygdaloid complex. (E) Anterograde 

labeling in ventral hippocampus and in the ventral mesencephalon. Left inset shows a 

high magnification detail of the labeled fibers in the CA1. Right inset shows a high 

magnification detail of the labeled fibers in the substantia nigra and the ventral 

tegmental area. (F) Anterograde labeling in the brainstem, at the level of the 

parabrachial nucleus. Upper inset shows a high magnification detail of the labeled fibers 

in the lateral division of the parabrachial nucleus. Bottom inset shows a high 

magnification detail of labeled fibers in the locus coeruleus. Photomicrographs taken 

from case #1243. For abbreviations, see list. Scale bar in A (valid for D): 1 mm. Scale 

bar in B (valid for C, E, F): 1 mm. Scale bars in insets in A-E: 100 µm. Scale bars in 

insets in F: 50 µm. 

Figure 8. Schematic representation of the pattern of afferent (A) and efferent (B) 

projections of the anterior cortical amygdaloid nucleus described in the present 

work.  (C) Functional interpretation of cortical and subcortical projections to the 

anterior cortical amygdaloid nucleus. The thickness of the arrows roughly represents the 

density of the projections. 
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TABLE LEGENDS 

Table 2. Semiquantitative rating of the density of the ipsilateral retrograde and anterograde 

labeling. For abbreviations, see list. 

++++ very dense; +++ dense; ++ moderate; + scarce; ↓+ very scarce; 0 not found. 
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Figure 1. Photomicrographs of cases of retrograde (A-C) and anterograde (D-F) labeling of different density. 
To illustrate the criteria used to rate the density of the obtained labeling, examples of very dense, moderate 

or very scarce labeling are shown. (A) very dense retrograde labeling in the mitral cell layer of the main 
olfactory bulb. (B) very dense anterograde labeling in the posterolateral cortical nucleus of the amygdala, 
especially in its layer I. (C) moderate retrograde labeling in the mitral cell layer of the accessory olfactory 

bulb. (D) moderate anterograde labeling in the ventral aspect of the CA1 of the hippocampus. (E) very 
scarce retrograde labeling in the infralimbic cortex. Note the granular deposits of DAB in the cytoplasm 

(arrowhead). (F) very scarce anterograde labeling in the medial division of the anterior olfactory nucleus 

(arrowhead). Scale bar in A, valid for B-F: 100 µm.  
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Figure 2. Photomicrographs of Nissl staining (A, B, D, E) and acetyl cholinesterase histochemistry (A', B', C', 
D') of transverse sections at different antero-posterior levels of the amygdaloid complex. Note the 

differences in acetyl cholinesterase reactivity between the cortex-amygdala transition zone and anterior 

cortical amygdala (A’-D’) and the differences in their laminar definition (A- D). Inset in D shows the loose 
organization of cell layers in the ACo. Scale bar in A, valid for A-C and A'- C': 500 µm. Scale bars in D and 

D’: 500 µm  
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Figure 3. Injection sites of Fluorogold and BDA in the anterior cortical amygdala of mice. (A–I) Schematic 
drawings representing the extent of the tracer injection deposits restricted to the anterior cortical 

amygdaloid nucleus. The injections of Fluorogold (retrograde tracer) are represented in panels A-D; the 

injections of BDA (anterograde tracer) are shown in panels E-I. Single injections are identified with the 
animal code. (J-K) Photomicrographs through the amygdala showing representative injection sites of 

Fluorogold (J, fluorescence microscopy) and BDA (K). Scale bar in J, valid for K = 200 µm  
 

172x167mm (300 x 300 DPI)  

 

 

Page 48 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

Figure 4. Summary of the distribution of retrograde labeling following a Fluorogold injection in the anterior 
cortical amygdaloid nucleus, plotted onto schematic drawings of parasagittal (A) and frontal (B-L) sections 
through the mouse brain. The injection site is depicted in panel (C). B is rostral, L is caudal. The schematic 

drawings are based on the #1339, which presented the largest restricted injection site (see Fig. 3A). For 
abbreviations, see list.  

 
176x235mm (300 x 300 DPI)  

 

 

Page 49 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

Figure 4 (continuation)  

 

176x81mm (300 x 300 DPI)  

 

 

Page 50 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



  

 

 

Figure 5. Photomicrographs of parasagittal (A) and frontal (B-F) sections through the mouse brain, 
illustrating the retrograde labeling observed in animals receiving a Fluorogold injection in the anterior 

cortical amygdaloid nucleus. The images correspond to the retrograde labeling presented in cases #1339 (A-
D; injection site showed in Fig 3J) and #1245 (E, F; injection site showed in Fig. 3F-H). (A) Retrogradely 

labeled mitral cells in the main olfactory bulb. Inset in A shows retrograde labeling in the mitral and 
glomerular cell layer (see arrowheads) of the accessory olfactory bulb. (B) Retrograde labeling present in 
the territory between the posterior aspect of the anterior olfactory nucleus and the olfactory tubercle. (C) 
Numerous labeled cells in the caudal piriform cortex and dorsal part of the endopiriform nucleus within the 

olfactory system. In the amygdala, dense labeling is present in the posterolateral cortical amygdaloid 
nucleus, and a moderate labeling appears in the posteroventral and posterodorsal subdivision of the medial 
amygdaloid nucleus, the intraamygdaloid division of the bed nucleus of the stria terminalis and the posterior 
part of the basomedial amygdaloid nucleus. Note the heterogeneous distribution of the retrograde labeling in 

the posterodorsal Me, with the labeled cells mainly located in the external part of its cellular layer 
(arrowheads). At this level, the posteromedial cortical amygdaloid nucleus is almost devoid of labeling. (D) 
Dense retrograde labeling in the caudal part of the posteromedial cortical amygdaloid nucleus and moderate 
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density of retrogradely labeled cells in the amygdalopiriform transition area. Within the olfactory cortex, 
dense labeling is present in the posterior part of the piriform cortex. (E) Numerous retrogradely labeled cells 

in the posterior intralaminar thalamic region. (F) Retrogradely labeled cells in the medial and lateral 
divisions of the parabrachial nucleus and in the locus coeruleus. For abbreviations, see list. Scale bar in A: 1 

mm. Scale bar in inset in A: 250 µm. Scale bar in B (valid for B–D): 500 µm. Scale bar in E (valid for F): 
200 µm.  
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Figure 6. Summary of the distribution of anterograde labeling following a BDA injection in the anterior 
cortical amygdaloid nucleus, plotted onto schematic drawings of parasagittal (A) and frontal (B-M) sections 
through the mouse brain. The injection site is shown in panel (G). B is rostral, M is caudal. The schematic 

drawings are based on the case #1340, which presented a restricted injection site and with no BDA traces 
along the pipette track (photomicrograph of injection site showed in Fig. 3K). For abbreviations, see list.  
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Fig. 6 (continuation)  
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Figure 7. Photomicrographs of frontal sections through the mouse brain, illustrating the anterograde labeling 
resulting after BDA injections in the anterior cortical amygdaloid nucleus. (A) Anterograde labeling in the 

dorsal peduncular cortex, the medial orbital cortex and infralimbic cortex. Inset in A shows a high 
magnification detail of the labeled fibers. (B) Anterograde labeling present in the basal forebrain and several 
structures of the central extended amygdala, such as the substantia innominata, the interstitial nucleus of 
the posterior limb of the anterior commissure and the anterior bed nucleus of the stria terminalis (BST). (C) 
Dense anterograde labeling next to the injection site, and in the posterior BST. Note that the labeled fibers 
avoid, to some extent, the nucleus of the lateral olfactory tract. Inset in C shows a high magnification detail 

of the labeled fibers in the different subdivisions of the posterior BST. (D) Anterograde labeling at caudal 
level of the amygdaloid complex. (E) Anterograde labeling in ventral hippocampus and in the ventral 

mesencephalon. Left inset shows a high magnification detail of the labeled fibers in the CA1. Right inset 
shows a high magnification detail of the labeled fibers in the substantia nigra and the ventral tegmental 

area. (F) Anterograde labeling in the brainstem, at the level of the parabrachial nucleus. Upper inset shows 
a high magnification detail of the labeled fibers in the lateral division of the parabrachial nucleus. Bottom 

inset shows a high magnification detail of labeled fibers in the locus coeruleus. Photomicrographs taken from 
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case #1243. For abbreviations, see list. Scale bar in A (valid for D): 1 mm. Scale bar in B (valid for C, E, F): 

1 mm. Scale bars in insets in A-E: 100 µm. Scale bars in insets in F: 50 µm.  
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Figure 8. Schematic representation of the pattern of afferent (A) and efferent (B) projections of the anterior 
cortical amygdaloid nucleus described in the present work.  (C) Functional interpretation of cortical and 
subcortical projections to the anterior cortical amygdaloid nucleus. The thickness of the arrows roughly 

represents the density of the projections.  
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Table 1. Anti-fluorogold primary antibody information 

 

Antigen Immunogen 

Manufacturer, Host species, Ig 

isotype, Catalog number and 

RRIDs 

Dilution used 

in IHC 

Fluorogold 
Fluorogold  

(5-hydroxystabilamide) 

Merck-Millipore, Temecula, CA.  

Rabbit, polyclonal, AB-153, RRID: 

AB_90738 

1:3,000 
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Table 2. Distribution of the ipsilateral retrograde and anterograde labeling obtained after tracer 

injections in the anterior cortical amygdaloid nucleus. 
 

  
FG ACo  

(retrograde) 
BDA ACo  

(anterograde) 

OLFACTORY SYSTEMS 

Accessory Olfactory Bulb MiA ++ ↓+ 

 GrA 0 ↓+ 

Main Olfactory Bulb Mi ++++ 0 

Olfactory Cortex DTT/VTT ++/+ +/++ 

 AOL + ↓+ 

 AOM ↓+ ↓+ 

 AOV 0 ↓+ 

 AOP + + 

 rostral Pir ++ ++ 

 caudal Pir +++ +++ 

 DEn/VEn +++/++ ++/+++ 

AMYGDALA and BST 

Vomeronasal amygdala AAV/AAD ++/++ ++++/++++ 

 BAOT ++++ ++ 

 MeA ++ ++++ 

 MeAV/MeAD ++/++ +++/++++ 

 MePV ++ +++ 

 MePD ++ +++ 

 PMCo +++ ++ 

Olfactory amygdala ACo INJECTION INJECTION 

 CxA +++ ++ 

 LOT +++ ++ 

 PLCo +++ ++++ 

 APir ++ + 

Amygdalohippocampal transition 
area 

AHi + + 

Basolateral complex BLA ↓+ + 

 BLP + + 

 BLV + ++ 

 BMA ++ ++++ 

 BMP ++ +++ 

 LaDL + + 

Central CeL ↓+ + 

 CeM + ++ 

 CeC 0 + 

 Astr 0 ↓+ 

 I ↓+ + 

BST BSTIA ++ +++ 

 BSTMA ↓+ + 

 BSTMV ↓+ ++ 

Page 59 of 62

John Wiley & Sons

Journal of Comparative Neurology

This article is protected by copyright. All rights reserved.



 BSTMPM + ++ 

 BSTMPI ++ ++ 

 BSTMPL + + 

 BSTLD 0 + 

 BSTLV ↓+ ++ 

 BSTLP ↓+ + 

CORTEX AND HIPPOCAMPAL FORMATION 

Cortex AID/AIV +/+++ 0/↓+ 

 AIP ++ ↓+ 

 PrL + ↓+ 

 IL ↓+ + 

 DP ↓+ + 

 MO + + 

 Cg 0 ↓+ 

 Cl ↓+ ↓+ 

 PRh + + 

 Ect + ↓+ 

Hippocampal formation CA1 + ++ 

 CA3 + 0 

 S + 0 

 LEnt ++ + 

SEPTUM / BASAL FOREBRAIN 

Lateral septal complex LSD 0 ↓+ 

 LSI ↓+ ↓+ 

 LSV 0 ↓+ 

 SHy 0 ↓+ 

 SHi +++ + 

Medial septum/ Diagonal band HDB/MCPO ++ +++ 

 VDB + ++ 

 MS + ↓+ 

Striato-pallidum AcbC/AcbSh 0 +/↓+ 

 ICj 0 + 

 Tu 0 + 

 VP + ++ 

 IPAC ↓+ +++ 

 SI + ++++ 

 SL ↓+ ++ 

 PREOPTIC REGION 

Preoptic MPA ↓+ ++ 

 MPO ↓+ ++ 

 LPO 0 + 

 AC 0 + 

 ADP 0 + 

 PS 0 ↓+ 
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 HYPOTHALAMUS 

Anterior AH ↓+ ↓+ 

 LA 0 ↓+ 

 Pa 0 ↓+ 

 Pe 0 ↓+ 

 SCh 0 ↓+ 

Tuberal RCh 0 ↓+ 

 DM 0 ↓+ 

 LH + +++ 

 MCLH 0 ++++ 

 VMH + + 

 PH ++ + 

 MTu 0 ++ 

 Te 0 ++ 

 TC ↓+ + 

 Arc 0 ↓+ 

 STh 0 ↓+ 

 PSTh 0 + 

Mamillary PMD/PMV ↓+/↓+ ↓+/+ 

 SuM ↓+ + 

 THALAMIC COMPLEX 

Prethalamus ZI ↓+ ↓+ 

 SubI 0 + 

Thalamus LHb 0 ↓+ 

 PVA/PV +/↓+ ↓+ 

 PVP ++ ↓+ 

 pv ++ + 

 PT 0 + 

 CM 0 + 

 SM 0 ++ 

 IMD 0 ↓+ 

 MD 0 + 

 Re + + 

 PF 0 ↓+ 

 SPF ++ ↓+ 

 SPFPC +++ ↓+ 

 SG ↓+ ↓+ 

 MGM + 0 

 PIL +++ ↓+ 

 POT 0 ↓+ 

 PP + ↓+ 

 MIDBRAIN and BRAINSTEM 

 PAG + + 

 VTA + + 
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 DpMe 0 ↓+ 

 RPC 0 ↓+ 

 SNC 0 + 

 SNR 0 + 

 DR + ↓+ 

 PMnR 0 ↓+ 

 PnO ↓+ 0 

 PPTg 0 ++ 

 LPB ++ + 

 MPB + ↓+ 

 KF 0 ↓+ 

 LC + + 

 RLi ↓+ 0 
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Summary and functional interpretation of cortical and subcortical projections to the 

anterior cortical nucleus of the amygdala. 
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