171 research outputs found

    Hemispherical Emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K

    Get PDF
    The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements

    Novel method for fast scanning calorimetry of electrospun fibers

    Get PDF
    © 2018 Elsevier B.V. Fast scanning chip-based calorimetry allows for the study of challenging polymers, for example, those which have rapid nucleation and crystallization kinetics, or which degrade within their melting range. Heating rates up to 4000 K/s allow for studies of hetero- and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically less than about 0.5 K/s. Recent studies have successfully demonstrated methodologies for obtaining quantitative measurements of thermal properties of polymer samples using fast scanning calorimetry (FSC). However, these studies have been restricted to thin films or small flakes cut from bulk samples. Fibrous samples present extreme challenges due to their fluffy nature, which prevents good thermal contact for FSC. Here we present a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using the Mettler Flash DSC1. The technique is demonstrated using polyethylene terephthalate (PET) whose fundamental thermal properties are available in the literature, and provide a good test for the accuracy of FSC on micron- to nano-scale fibers. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto copper TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample-to-sensor contact. As spun amorphous samples were held isothermally at temperatures ranging from Tg (69 °C) to Tm (280 °C) then heated at 2000 K/s to assess their melting behavior after cold crystallization. Results show that this sample preparation technique provides quantitative data, comparing favorably to that achieved with conventional calorimeters

    Melting temperature and heat of fusion of cytosine revealed from fast scanning calorimetry

    Get PDF
    © 2017 Elsevier B.V. Thermophysical properties in the melting range of cytosine, one of the five nucleobases of DNA and RNA, are hard to determine because of the low thermal stability of the compound and the high vapor pressure. As for other biomolecules fast heating rates allow melting of cytosine without detectable decomposition. By applying fast scanning calorimetry with the heating rate at 6000 K s −1 we succeeded to avoid decomposition and determine the melting temperature of cytosine (extrapolated to zero heating rate), as T fus = (606 ± 4) K, the glass transition temperature of the supercooled liquid state as T g = (388 ± 3) K, cold-crystallization temperature as T cryst = (448 ± 8) K, and the liquid state molar heat capacity C p,m ° (l) = (272 ± 2) J mol −1 K −1 at 423 K. Taking into account the temperature dependent mass loss of the nanogram sized sample (up to 25% during the melting scan) we obtained the molar enthalpy of fusion of cytosine as Δ cr l H(T fus ) = (35 ± 4) kJ mol −1 in good agreement with the adjusted molar enthalpy of crystallization Δ l cr H(T fus ) = (34 ± 2) kJ mol −1

    The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice

    Get PDF
    Vascular endothelial growth factor-A is widely regarded as the principal stimulator of angiogenesis required for tumour growth. VEGF is generated as multiple isoforms of two families, the pro-angiogenic family generated by proximal splice site selection in the terminal exon, termed VEGFxxx, and the anti-angiogenic family formed by distal splice site selection in the terminal exon, termed VEGFxxxb, where xxx is the amino acid number. The most studied isoforms, VEGF165 and VEGF165b have been shown to be present in tumour and normal tissues respectively. VEGF165b has been shown to inhibit VEGF- and hypoxia-induced angiogenesis, and VEGF-induced cell migration and proliferation in vitro. Here we show that overexpression of VEGF165b by tumour cells inhibits the growth of prostate carcinoma, Ewing's sarcoma and renal cell carcinoma in xenografted mouse tumour models. Moreover, VEGF165b overexpression inhibited tumour cell-mediated migration and proliferation of endothelial cells. These data show that overexpression of VEGF165b can inhibit growth of multiple tumour types in vivo indicating that VEGF165b has potential as an anti-angiogenic, anti-tumour strategy in a number of different tumour types, either by control of VEGF165b expression by regulation of splicing, overexpression of VEGF165b, or therapeutic delivery of VEGF165b to tumours

    Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current

    Get PDF
    The molecular dynamics of a quenched poly (ether ether ketone) (PEEK) was studied over a broad frequency range from 10-3 to 106 Hz by combining dynamic dielectric spectroscopy (DDS) and thermo-stimulated current (TSC) analysis. The dielectric relaxation losses e00 KK has been determined from the real part e0 T(x) thanks to Kramers–Kronig transform. In this way, conduction and relaxation processes can be analyzed independently. Two secondary dipolar relaxations, the c and the b modes, corresponding to non-cooperative localized molecular mobility have been pointed out. The main a relaxation appeared close to the glass transition temperature as determined by DSC; it has been attributed to the delocalized cooperative mobility of the free amorphous phase. The relaxation times of dielectric relaxations determined with TSC at low frequency converge with relaxation times extracted from DDS at high frequency. This correlation emphasized continuity of mobility kinetics between vitreous and liquid state. The dielectric spectroscopy exhibits the ac relaxation, near 443 K, which has been associated with the rigid amorphous phase confined by crystallites. This present experiment demonstrates coherence of the dynamics of the PEEK heterogeneous amorphous phase between glassy and liquid state and significantly improve the knowledge of molecular/dynamic structure relationships

    VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro

    Get PDF
    Vascular endothelial growth factor (VEGF) A is generated as two isoform families by alternative RNA splicing, represented by VEGF-A165a and VEGF-A165b. These isoforms have opposing actions on vascular permeability, angiogenesis, and vasodilatation. The proangiogenic VEGF-A165a isoform is neuroprotective in hippocampal, dorsal root ganglia, and retinal neurons, but its propermeability, vasodilatatory, and angiogenic properties limit its therapeutic usefulness. In contrast, a neuroprotective effect of endogenous VEGF-A165b on neurons would be advantageous for neurodegenerative pathologies. Endogenous expression of human and rat VEGF-A165b was detected in hippocampal and cortical neurons. VEGF-A165b formed a significant proportion of total VEGF-A in rat brain. Recombinant human VEGF-A165b exerted neuroprotective effects in response to multiple insults, including glutamatergic excitotoxicity in hippocampal neurons, chemotherapy-induced cytotoxicity of dorsal root ganglion neurons, and retinal ganglion cells (RGCs) in rat retinal ischemia-reperfusion injury in vivo. Neuroprotection was dependent on VEGFR2 and MEK1/2 activation but not on p38 or phosphatidylinositol 3-kinase activation. Recombinant human VEGF-A165b is a neuroprotective agent that effectively protects both peripheral and central neurons in vivo and in vitro through VEGFR2, MEK1/2, and inhibition of caspase-3 induction. VEGF-A165b may be therapeutically useful for pathologies that involve neuronal damage, including hippocampal neurodegeneration, glaucoma diabetic retinopathy, and peripheral neuropathy. The endogenous nature of VEGF-A165b expression suggests that non-isoform-specific inhibition of VEGF-A (for antiangiogenic reasons) may be damaging to retinal and sensory neurons

    A Review on the Mechanical Modeling of Composite Manufacturing Processes

    Get PDF
    © 2016, The Author(s). The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail
    • …
    corecore