14 research outputs found

    Distribution of indium in the Ánimas - Chocaya - Siete Suyos District

    Get PDF
    The Ánimas - Chocaya - Siete Suyos district in SW Bolivia hosts a Bolivian-type polymetallic vein mineralization composed mostly of cassiterite, sphalerite, pyrite, galena, stannite, lead sulfosalts, tin sulfosalts and silver sulfosalts. In addition to base (Zn, Sn, Pb) and precious (Ag) metals, important concentrations of In have been described. Systematic EPMA analyses have revealed that the highest concentrations are found in an early generation of sphalerite (up to 9.66 wt% In) and in stannite (up to 4.11 wt% In). Although In-bearing sphalerites are relatively Fe-rich (mostly between 6.0 and 18.1 mol % FeS), the atomic concentrations of these two elements do not yield any correlation. In contrast, In is positively correlated with Cu mostly along a Cu/In = 1 proportion pointing to a (In3+ + Cu+ ) ¿ 2Zn2+ coupled substitution. A relatively high activity of Cu during the crystallization of In-rich sphalerite is also supported by exsolutions of chalcopyrite and stannite.Peer ReviewedPostprint (author's final draft

    Indium Mineralization in the Volcanic Dome-Hosted Ánimas-Chocaya-Siete Suyos Polymetallic Deposit, Potosí, Bolivia

    Get PDF
    A volcanic dome complex of Miocene age hosts the In-bearing Ánimas-Chocaya-Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the Ánimas, Burton, Colorada, and Rosario veins in the Ánimas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite ± intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) ↔ 2Zn2+ coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local "chalcopyrite disease" texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite-stannite-roquesite pseudoternary system

    Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, PotosĂ­, Bolivia

    Get PDF
    The Huari Huari deposit, PotosĂ­ Department in SW Bolivia, hosts polymetallic stratiform and vein mineralization of Miocene age with significant concentrations of the critical metal indium (In). Vein mineralization records document early crystallization of quartz and cassiterite followed by prominent associations of sulfides and sulfosalts. The earliest sulfide was arsenopyrite, followed by pyrrhotite, and progressively giving way to pyrite as the main iron sulfide, whereas Cu-Ag-Pb sulfosalts constitute late hypogene associations. Sphalerite is the chief ore mineral, and its crystallization is extended during most of the mineralization lifespan as evidenced by its initial cocrystallization with pyrrhotine, then with pyrite, and finally with Ag-Pb sulfosalts. The composition of sphalerite varies from early to late generations with a continuous decrease in FeS that attests to a decrease in temperature, which is constrained to vary from ~450 to <200 °C, and/or an increase in f(S2), both congruent with the described paragenetic sequence. Indium concentrated mostly in the structure of Fe-rich sphalerite (up to 3.49 wt. %) and stannite (up to 2.64 wt. %) as limited solid solutions with roquesite in the (Zn,Fe)S-Cu2FeSnS4-CuInS2 pseudoternary system. In sphalerite, In shows a strong positive correlation with Cu at Cu/In = 1, suggesting its incorporation via a (Cu+ + In3+) ↔ 2Zn2+ coupled substitution, and it does not correlate with Fe. In stannite, In shows a moderate, negative correlation with Cu and Sn, and an In3+ ↔ (Cu+ + Âœ Sn4+) coupled substitution is suggested. Coexisting sphalerite and stannite yielded the highest In concentrations and crystallized at temperatures between 350 and 250 °C. Copper activity probably played a major role in the accumulation of In in the structure of sphalerite since In-bearing sphalerite coexisted with the deposition of stannite, shows high concentrations of Cu (up to 0.13 atoms per formula unit (a.p.f.u.)) in its structure, and hosts exsolutions of stannite and chalcopyrite. Distribution on the district scale of In suggests an input of hydrothermal fluids richer in Cu in the central position of the mineralizing system, represented by the AntĂłn Bravo vein

    Indium mineralization in the volcanic dome-hosted Ánimas–Chocaya–Siete Suyos polymetallic deposit, Potosí, Bolivia

    Get PDF
    A volcanic dome complex of Miocene age hosts the In-bearing Ánimas–Chocaya–Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in subvertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the Ánimas, Burton, Colorada, and Rosario veins in the Ánimas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite ± intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) Âż 2Zn2+ coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local “chalcopyrite disease” texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite–stannite–roquesite pseudoternary system.Peer ReviewedPostprint (published version

    The Barcelona SGA-SEG student chapter: New fronts for international cooperation in teaching Geology and student exchanges

    Get PDF
    The Barcelona SGA-SEG Student Chapter is a student organization created and organized by students from the Faculty of Earth Science (University of Barcelona; UB). It offers to students interested in Mineralogy, Mineral Deposits and Economic Geology the opportunity to participate in research projects, student exchanges, seminars and courses in an international level. The students develop capacity of self-organization, team-work and public social skills. Recent activities are international exchange of student groups and participation in the project to update and replicate the mineral collection of the UB

    The pilot project of the mineral collections from the University of Barcelona: An opportunity to create updated teaching material to be shared with other universities

    Get PDF
    The Mineralogy teaching collection from the University of Barcelona has proved to be a successful tool for students. The urge of its renewal to meet the necessities of modernCindustry brought the idea to replicate this collection in order to offer high quality teaching material to other universities worldwide. This project has led to an international collaboration aiming to enhance international solidarity among universities and make evident the importance of Mineralogy in Geology studies

    Com trobar elements rars de la taula periĂČdica a Catalunya?

    Get PDF
    Hi ha molts mecanismes de concentraciĂł d'elements quĂ­mics a partir de la seva dispersiĂł geoquĂ­mica per tal de formar dipĂČsits minerals d'interĂšs econĂČmic. La diversitat de processos geolĂČgics que han configurat el subsĂČl de Catalunya permet esperar una gran diversitat de recursos, molts d'ells explotats ja de fa segles. En aquest treball es discuteixen les possibilitats que alguns recursos d'elements rars, mai investigats en detall, es puguin trobar a Catalunya, i es conclou que hi ha recursos potencials en aquests elements formats per processos de fraccionament magmĂ tic, hidrotermal i supergĂšnic

    Com fer un article divulgatiu. Integrant coneixements i desenvolupant competĂšncies

    Get PDF
    Activitat dissenyada per proporcionar als estudiants uns fonaments clars per escriure bones memĂČries, informes o articles en el seu futur professional. Neix de la necessitat de millorar la seva competĂšncia comunicativa escrita, i es basa en la redacciĂł conjunta (professors + estudiants de diferent nivell) d'un article divulgatiu, amb revisiĂł externa, i en la seva posterior presentaciĂł i divulgaciĂł. Es pretĂ©n tambĂ© fomentar la metodologia docent d'Aprenentatge-Servei (ApS) entre els estudiant

    Indium mineralization in the volcanic dome-hosted Ánimas–Chocaya–Siete Suyos polymetallic deposit, Potosí, Bolivia

    No full text
    A volcanic dome complex of Miocene age hosts the In-bearing Ánimas–Chocaya–Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the Ánimas, Burton, Colorada, and Rosario veins in the Ánimas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite ± intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) 2Zn2+ coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local “chalcopyrite disease” texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite–stannite–roquesite pseudoternary system. Keywords: critical metals; high-tech metals; indium; sphalerite; Bolivian-type deposit

    Spatial and Temporal Controls on the Distribution of Indium in Xenothermal Vein-Deposits: The Huari Huari District, PotosĂ­, Bolivia

    Get PDF
    The Huari Huari deposit, PotosĂ­ Department in SW Bolivia, hosts polymetallic stratiform and vein mineralization of Miocene age with significant concentrations of the critical metal indium (In). Vein mineralization records document early crystallization of quartz and cassiterite followed by prominent associations of sulfides and sulfosalts. The earliest sulfide was arsenopyrite, followed by pyrrhotite, and progressively giving way to pyrite as the main iron sulfide, whereas Cu–Ag–Pb sulfosalts constitute late hypogene associations. Sphalerite is the chief ore mineral, and its crystallization is extended during most of the mineralization lifespan as evidenced by its initial cocrystallization with pyrrhotine, then with pyrite, and finally with Ag–Pb sulfosalts. The composition of sphalerite varies from early to late generations with a continuous decrease in FeS that attests to a decrease in temperature, which is constrained to vary from ~450 to &lt;200 °C, and/or an increase in f(S2), both congruent with the described paragenetic sequence. Indium concentrated mostly in the structure of Fe-rich sphalerite (up to 3.49 wt. %) and stannite (up to 2.64 wt. %) as limited solid solutions with roquesite in the (Zn,Fe)S–Cu2FeSnS4–CuInS2 pseudoternary system. In sphalerite, In shows a strong positive correlation with Cu at Cu/In = 1, suggesting its incorporation via a (Cu+ + In3+) ↔ 2Zn2+ coupled substitution, and it does not correlate with Fe. In stannite, In shows a moderate, negative correlation with Cu and Sn, and an In3+ ↔ (Cu+ + Âœ Sn4+) coupled substitution is suggested. Coexisting sphalerite and stannite yielded the highest In concentrations and crystallized at temperatures between 350 and 250 °C. Copper activity probably played a major role in the accumulation of In in the structure of sphalerite since In-bearing sphalerite coexisted with the deposition of stannite, shows high concentrations of Cu (up to 0.13 atoms per formula unit (a.p.f.u.)) in its structure, and hosts exsolutions of stannite and chalcopyrite. Distribution on the district scale of In suggests an input of hydrothermal fluids richer in Cu in the central position of the mineralizing system, represented by the AntĂłn Bravo vein
    corecore